簡易檢索 / 詳目顯示

研究生: 邱泰翔
Chiu, Tai-Hsiang
論文名稱: 環糊精-單體包容錯合物自組裝集合體及所形成螺旋高分子之製備及特性研究
Fabrication and Characterization of Self-Assembled Beta-Cyclodextrin Threaded Monomers and Induced Helical Polymers
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 62
中文關鍵詞: 超分子螺旋高分子自組裝包容錯合物
外文關鍵詞: supramolecule, helical polymer, inclusion complex, self-assembly
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成出一個新穎性光學活性單體,為了誘導螺旋高分子的形成,因此在單體的設計上,縮小非光學活性鏈長,並使末端接上膽固醇基團,並利用此單體與β-環糊精形成包容錯合物,來做一系列的特性探討。從NMR所得知的結果顯示,平均約有一到二個β-環糊精分子穿過此光學活性單體,誘導出螺旋結構的自組裝包容錯合物之形成。此自組裝包容錯合物的形成可以藉由SEM以及TEM來鑑定其結構。由於此自組裝包容錯合物具有單體的性質,因此我們使用benzoyl peroxide作為光起始劑來做更近一步的聚合。此自組裝的超分子分別使用了POM和CD來證實其高秩序性排列及其螺旋結構。此研究發展出一個簡單的方法來製備出具螺旋性之高分子。此外,在加熱以及超音波震盪的處理後,可以從聚合的錯合物分子當中將β-環糊精脫去,利用POM和CD證實沒有β-環糊精的高分子依然可以維持其原本螺旋的結構,推測的原因可能為高分子鏈的纏繞以及側鏈基團分子間的作用力所導致,利用TEM可以確定聚合後之包容錯合物的收縮。

    A novel chiral monomer with a relatively shorter achiral segment end-capped with a cholesteryl group and threaded with β-cyclodextrin was synthesized in order to induce the formation of a helical polymer. 1H-NMR studies revealed that one or two cyclodextrin molecules were threaded onto the synthesized chiral monomer, leading to the formation of a helical construction of self-assembled inclusion complexes. The formation of a self-assembled inclusion complex was identified using SEM and TEM. The monomeric self-assembled inclusion complex was further polymerized using benzoyl peroxide as a photoinitiator. Both the highly ordered alignment and the helical structure of self-assembled supramolecules were confirmed using polarized optical microscopy and circular dichroism spectroscopy, respectively. We have first demonstrated an easy process for the fabrication of helical polymers via self-assembled monomers threaded with a β-cyclodextrin end capped with a chiral moiety. Furthermore, after thermal treatment and ultrasonical agitation, β-cyclodextrins were removed from pendant group of polymerized inclusion complex. From the results of circular dichroism spectra and polarized optical microscopy, the helical structure of the polymerized inclusion complex without β-cyclodextrin was found to be kept. It could be due to both the entwisting of polymer chains and the molecular interaction of the pendant groups. The shrinkage of the polymerized inclusion complex was confirmed using TEM technique.

    目錄 摘要 I Abstract II 目錄 III 表目錄 V 圖目錄 VI Scheme VIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 原理與文獻回顧 4 2-1 自組裝結構 4 2-2 自組裝超分子 6 2-3 環糊精之結構與性質 8 2-4 環糊精包容錯合物 12 2-4-1 環糊精包容錯合物製備方法 13 2-4-2 環糊精包容錯合物之應用 14 2-5 自行包容錯合物 15 2-6 環糊精超分子結構 17 第三章 實驗 22 3-1 藥品 22 3-2 儀器 23 3-3光學活性單體(chiral monomer)合成 24 3-3-1 合成4-(6-Hydroxyhexyloxy) benzoic acid 24 3-3-2 4-(6-Acryloyloxyhexyloxy) benzoic acid 24 3-3-3 合成Cholesteryl-4-(6-acryloyloxyhexyloxy) benzoate 25 3-4 合成β-CD-CAHB 包容錯合物(β-CD-CAHB inclusion complex) 26 3-5 聚合β-CD-CAHB inclusion complex 27 3-6 製作β-CD-CAHB IC與MMA之複合膜 28 3-7 從聚合後的β-CD-CAHB IC中將β-CD移除 28 3-8 TEM、POM與SEM試片製作 29 3-8-1 TEM試片製作 29 3-8-2 POM試片製作 29 3-8-3 SEM試片製作 29 第四章 結果與討論 30 4-1光學活性單體(chiral monomer)之鑑定 30 4-2 製備β-CD-CAHB包容錯合物(Inclusion complex, IC) 32 4-3 包容錯合物β-CD-CAHB的鑑定 32 4-4 包容錯合物β-CD-CAHB的聚合 44 4-5 從聚合後的包容錯合物中移除β-CD 52 第五章 結論 59 第六章 參考文獻 60 表目錄 Table 2-1 Physical properties and molecular dimension of cyclodextrins. 12 圖目錄 Figure 2-1 Schematic representation of a [2] catenane, a [2] rotaxane and a [2] trefoil knot. 4 Figure 2-2 Schematic representation of an inclusion compound. 5 Figure 4-1 1H-NMR spectrum of CAHB. 31 Figure 4-2 FTIR spectra of β-CD (dash line) and β-CD-CAHB (solid line). 33 Figure 4-3 1H-NMR of the β-CD-CAHB inclusion complex. Molar ratio of CD/CAHB was estimated through the peak areas. 34 Figure 4-4 DSC curves of the inclusion complex: (a) water evaporation at about 100°C and polymerization at 195°C were found in the first heating cycle; (b) no significant peaks were found in the second heating cycle…………………………………………...36 Figure 4-5 POM textures of the self-assembled inclusion complex. The bright texture represents a highly ordered molecular arrangement of β-CD-CAHB. 37 Figure 4-6 SEM images of the self-assembled inclusion complex (β-CD-CAHB). A columnar structure with various diameters was obtained. 39 Figure 4-7 TEM of (a) self-assembled inclusion complex, (b) enlargement of construction in (a), (c) cross section of a helical construction, and (d) cross section of a sloped helical construction. 40 Figure 4-8 Schematic representation for the formation of helical arrangement of chiral monomers. 42 Figure 4-9 TEM images of the synthesized self-assembled inclusion complex (β-CD-CAHB) clusters under various multiplying powers. 43 Figure 4-10 POM textures of the polymerized self-assembled inclusion complexes. 45 Figure 4-11 A composite film of MMA, multifunctional acrylate, and self-assembled inclusion complexes. 46 Figure 4-12 TEM images of the polymerized self-assembled inclusion complexes. 48 Figure 4-13 TEM images of sliced cross section of the polymerized self-assembled inclusion complexes. 49 Figure 4-14 Schematic representation for the formation of helical chiral polymers. 50 Figure 4-15 Circular dichroism spectrum of the polymerized self-assembled inclusion complexes. 51 Figure 4-16 UV-vis spectrum of the polymerized self-assembled inclusion complexes. 52 Figure 4-17 FTIR spectrum of β-CD removed helical polymer. 53 Figure 4-18 POM textures of the β-CD removed helical polymer. 54 Figure 4-19 TEM images of β-CD removed helical polymer. 55 Figure 4-20 TEM images of sliced cross section of β-CD 56 Figure 4-21 Circular dichroism spectrum of β-CD removed helical polymer. 57 Figure 4- 22 Schematic representation for the formation of β-CD removed helical chiral polymers. 58 Scheme Scheme 3-1 Synthesis of chiral monomer. 26 Scheme 3-2 Synthesis of inclusion complex. 27 Scheme 3-3 Removing of β-CD from inclusion complex. 28 Scheme 4-1 Schematic representation of the cyclodextrin threaded inclusion complex. 35

    1.劉育,張衡益,李莉,王浩編著,奈米超分子化學,化學工業出 版社,2004。
    2.L. Brunveld, Folmer, B. J. B. Folmer, E. W. Meijer and R. P. Silbesma, Chem. Rev., 2001 101, 4071.
    3.S. L. Wolf, Molecular and Cellular Biology, Wardwoorth: Belmont, CA, 1996.
    4.M. Miyauchi, T. Hoshino, H. Yamaguchi, S. Kamitori, and A. Harada, J. Am. Chem. Soc., 2005, 127, 2034-2035.
    5.J. H. Liu, H. J. Hung, and A. Harada, Langmuir 2008, 24, 7442-7449.
    6.M. van den Boogaard, “ Cyclodextrin-containing Supramolecular Structures-From pseudo-polyrotaxanes towards molecular tubes, insulated molecular wires and topological networks”, University of Groningen, the Netherlands, 2003.
    7.S. R. Puniredd, M. P. Srinivasan Langmuir 2005, 21, 7812.
    8.Y. Zhang, C. M. Cheng, B. Cusick, P. R. LeDuc. Langmuir 2007, 23, 8129.
    9.S. Lecommandoux, H. A. Klok, M. Sayar, A. I. Stupp. J. Polym. Sci. Part A: Polym. Chem., 2003, 41, 3501.
    10.T. Satoh, M. Tamaki, Y. Kitajyo, T. Maeda, H. Ishihara, T. Imai, H. Kaga, T. Kakuchi. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 406.
    11.M. Nango, T. Hikita, T. Nakano, T. Yamada, M. Nagata, M. Kurono, T. Ohtsuka. Langmuir 1998, 14, 407.
    12.A. Yoshida, K. Hashizaki, H. Yamauchi, H. Sakai, S. Yokoyama, M. Abe. Langmuir 1999, 15, 2333.
    13.J. S. Park, Y. B. Lim, Y. M. Kwon, B. Jeong, Y. H. Choi, S. W. Kim. J. Polym. Sci. Part A: Polym. Chem., 1999, 37, 2305.
    14.Y. Huang, C. Y. Chiang, S. K. Lee, Y. Gao, E. L. Hu, J. D. Yoreo, A. M. Belcher. Nano. Lett. 2005, 5, 1429.
    15.M. F. Hawthorne, Z. Zheng. Acc. Chem. Res. 1997, 30, 267.
    16.Y. Liu, Y. W. Yang, Y. Chen, H. X. Zou. Macromolecules, 2005.
    17.J. M. Lehn. Supramolecular Chemistry; Wiley-VCH: Weinheim, 1995.
    18.J. M. Lehn. Angew. Chem. Int. Ed. Engl. 1990, 29, 1304.
    19.H. Ritter and M. Tabatabai, Prog. Polym. Sci, 27, 1713, 2002.
    20.W. Saenger, J. Jacob, K. Gessler, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith and T. Takaha, Chem. Rev., 1998, 98, 1787.
    21.何仲貴編著,環糊精包合技術,人民衛生出版社,2008。
    22.Y. Liu, Y. W. Yang, Y. Chen, and H. X. Zou, Macromolecules, 2005.
    23.J. Peet, C. C. Rusa, M. A. Hunt, A. E. Tonelli, and C. M. Balik, Macromolecules, 2005, 38, 537.
    24.Y. Inoue, M. Miyauchi, H. Nakajima, Y. Takashima, H. Yamaguchi, and A. Harada, J. Am. Chem. Soc., 2006, 128, 8994.
    25.A. Harada, M. Kamachi, Macromolecules, 1990, 23, 2821.
    26.I. Tabushi, Acc. Chem. Res., 1982, 15, 66.
    27.S. Anderson, T. D. W. Claridge and H. L. Anderson, Angew. Chem. Int. Ed. Engl., 1997, 36, 1310.
    28.Y. Liu, Y. L. Zhao, and H. Y. Zhang, Langmuir, 2006, 22, 3434.
    29.J. Liu, H. R. Sondjaja, and K. C. Tam, Langmuir, 2007, 23, 5106.
    30.J. Wang and M. Jiang, J. Am. Chem. Soc. 2006, 128, 3703-3708.
    31.Y. Xu, S. Bolisetty, M. Ballauff, and A. H. E. Muller, J. Am. Chem. Soc. 2009, 131, 1640–1641.
    32.X. H. Dai, C. M. Dong, H. B. Fa, D. Yan, Y. Wei. Biomacromolecules 2006, 7, 3527.
    33.C. C. Rusa, C. Luca, A. E. Tonelli. Macromolecules 2001, 34, 1318.
    34.L. Huang, E. Allen, A. E. Tonelli. Polymer 1999, 40, 3211.
    35.Y. Liu, Y. W. Yang, Y. Chen, H. X. Zou. Macromolecules 2005, 38, 5838.
    36.A. R. Hedges, Chem. Rev. 1998, 98 (5), 2035.
    37.S. H. Kang, K. S. Jang, P. Theato, R. Zentel, J. Y. Chang. Macromolecules 2007, 40, 8349.
    38.K. Okoshi, K. Nagai, T. Kajitani, S. Sakurai, and E. Yashima, Macromolecules 2008, 41 (20), 7752.

    下載圖示 校內:2010-07-24公開
    校外:2010-07-24公開
    QR CODE