簡易檢索 / 詳目顯示

研究生: 姚慶源
Yao, Chin-Yan
論文名稱: 富氧燃燒的質能平衡與火焰特性研究
Studies on Mass-Energy Balance and Flame Characteristics of Oxy-Fuel Combustion
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 69
中文關鍵詞: 純氧燃燒煙道氣回流二氧化碳捕獲噴流擴散火焰
外文關鍵詞: Oxy-fuel combustion, Flue gas recirculation, CO2 capture, Jet Diffusion Flame
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了解富氧燃燒結合煙道氣回流系統的燃燒特性,本研究內容分為兩部份:(1)理論分析富氧燃燒的質能平衡特性;(2)實驗分析天然氣噴流擴散火焰特性。
    第一部份以天然氣及柴油做為燃料,在完全燃燒,固定總熱釋放率為1MW條件下,進行富氧燃燒(氧濃度=21%~100%)結合煙道氣回流(FGR=0%~75%)的質能平衡特性之理論分析。減少氮氣以提高助燃氣體中的氧濃度,會因為總進氣流率的減少而造成絕熱火焰溫度的快速增加。在純氧狀態下,絕熱火焰溫度會高於4000℃。因此配合煙道氣回流,利用煙道氣中的二氧化碳去取代氮氣作為稀釋載體,可有效降低富氧燃燒所產生絕熱火焰溫度過高的問題;並且回流煙道氣中所含熱量可減少燃料供應率。此外,煙道氣中二氧化碳濃度也會隨著助燃氣體氧濃度的提高而增加,對於二氧化碳的捕捉有顯著的幫助。
    第二部份以雙環同軸燃燒器,建立富氧環境下之噴流擴散火焰。透過改變燃料、助燃氣體出口速度、助燃氣體氧濃度以及助燃氣體中氮氣及二氧化碳的比例,探討其對火焰高度及火焰型態的影響。研究結果顯示,擴散火焰在無外管助燃氣體流速的情況下,火焰高度與火焰擺盪幅度隨內管燃料出口流速的提升而變高變大。當固定助燃氣體氧濃度及燃料出口流速,火焰高度不隨助燃氣體的速度變化。固定燃料及助燃氣體噴流出口速度,噴流擴散火焰的高度隨助燃氣體氧濃度的提升而降低、火焰會隨之變亮。當助燃氣體氧濃度為21%時,隨著二氧化碳濃度的增加,火焰亮度會變暗,最後火焰會開始上飄形成浮火;且當助燃氣體流速愈大,浮火上飄的高度會愈高,擺盪幅度也愈大。

    For developing the technology of oxy-fuel combustion, the mass and energy balance characteristics and experimental tests of oxy-fuel jet diffusion flames were investigated.
    In the first part, the theoretical prediction of oxy-fuel combustion with nature gas and diesel were calculated. The mass and energy balance characteristics were considered with flue gas recirculation. Although it is benefit to capture CO2 in flue gas with increasing oxygen concentration, the furnace temperature would be rapidly increased. Particularly, it would be higher than 4000oC with pure oxygen. However, flue gas recirculation system would bring back CO2, and that would decrease the furnace temperature considerably. Besides, the waste heat carried back in the flue gas would also reduce the fuel quantity needed.
    In the second part, the coaxial methane jet diffusion flames were setup to simulate the oxy-fuel combustion. Without annular flow, the flame height and flickering range would be proportioned to the velocity of inner tube. When the concentration of oxygen and the velocity of fuel were fixed, the height of flame stayed the same with increasing velocity of oxidizer. As we fixed velocities of fuel and oxidizer, the flame would be shortened and brighter with oxygen concentration increasing. When the concentration of CO2 increased, the flame brightness would be less luminous, and finally yielded a lifted flame.

    總目錄 I 表目錄 III 圖目錄 IV 符號說明 IX 一、前言 1 1-1 文獻回顧 2 1-1-1 二氧化碳捕獲技術 2 1-1-2 富氧燃燒技術 6 1-1-3 噴流擴散火焰 8 1-2 研究背景與目的 9 二、理論分析富氧燃燒的質能平衡特性 11 2-1 燃燒特性分析 12 2-1-1 氣體流率 12 2-1-2 熱量率 15 2-1-3 絕熱火焰溫度 16 2-1-4 煙道氣的組成 17 2-2 理論分析之結果與討論 17 2-2-1 助燃氣體氧濃度的影響 1.絕熱火焰溫度提高。2.進氣流率降低。 18 2-2-2 煙道氣回流比例的影響 19 三、實驗分析天然氣噴流擴散火焰特性 21 3-1 實驗設備與方法 21 3-1-1 實驗設備 21 3-1-2 實驗方法與步驟 23 3-2 實驗分析之結果與討論 24 3-2-1 內外管出口流速對火焰特性的影響 24 3-2-2 助燃氣體氧濃度對火焰特性的影響 25 3-2-3 助燃氣體中二氧化碳取代氮氣對火焰特性的影 響 26 四、結論 27 4-1 理論分析富氧燃燒的質能平衡特性 27 4-2 實驗分析天然氣噴流擴散火焰特性 29 五、參考文獻 31 六、圖表 34

    1.“BP Statistical Review of World Energy 2004,” British Petroleum, 2004.
    2.“International Energy Outlook 1997,” Energy Information Administration (EIA),Department of Energy (DOE), USA, 1997.
    3.能源政策白皮書(民國87年版),經濟部能源委員會,1998。
    4.「能源領域」,政府科技發展策略規劃報告(民國93年版),行政院國家科學委員會,2005。
    5.「京都議定書」,聯合國氣候變化綱要公約第三次締約國大會,日本京都,1997年。
    6.DTI, “Review of the Feasibility of Carbon Dioxide Capture and Storage in the UK,” Cleaner Fossil Fuels Programme, 2003.
    7.Lyngfelt, A., and Leckner, B., “Technologies for CO2 Separation,” Mini-Symposium on Carbon Dioxide Capture and Storage, Goteborg, pp.25-35, 1999.
    8.Chiesa, P., Consonni, S., and Lozza, G., “A Comparative Analysis of IGCCs with CO2 Sequestration,” Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Interlaken, pp.107-112, 1998.
    9.Mattisson, T., and Lyngfelt, A., “Capture of CO2 Using Chemical-Looping Combustion,” First Biennial Meeting of the Scandinavian-Nordic Section of the Combustion Institute, Goteborg, pp.163-168, 2001.
    10.Atwater, J.E., “Carbon Dioxide Control,” Oregon State University, 1996.
    11.Chakravarti, S., Gupta, A., and Hunek, B., “Advanced Technology for the Capture of Carbon Dioxide from Flue Gases,” Proceedings of First National Conference on Carbon Sequestration, Washington, DC, May 14-17, 2001.
    12.Rao, A.B., and Rubin, E.S., “A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control,” Environmental Science & Technology, Vol.36, No.20, pp.4467-75, 2002.
    13.DOE, “Carbon Sequestration: State of Science,” Draft Report from the Office of Science, Department of Energy, Washington, D.C., 1999..
    14.Deppe, G., et al., “A High Pressure Carbon Dioxide Separation Process in an IGCC Plant,” Proceedings of the Conference on the Future Energy Systems and Technology for CO2 Abatement, Antwerp, Belgium, pp.97-106, 2002.
    15.Bates, E.D., Mayton, R.D., Ntai, I., and Davis, J.H., “CO2 Capture by a Task-Specific Ionic Liquid,” J. Am. Chem. Soc., Vol.124, No.6, pp.926-27, 2002.
    16.Office of Fossil Energy/ Department of Energy, “Carbon Capture Research, ”http://fossil.energy.gov/programs/sequestration/capture/index.html, August 1, 2005.
    17.Tan, Y., Croiset, E., Douglas, M.A., and Thambimuthu, K.V., “Combustion Characteristics of Coal in a Mixture of Oxygen and Recycled Flue Gas,” Fuel, Vol.85, No.4, pp.507-512, 2006.
    18.Giacomo, B., Alessandro, B., and Giuseppe, R., “Thermodynamics Applied to Oxygen Enrichment of Combustion Air” Energy Conversion and Management, Vol.43, pp.2589-2600, 2002.
    19.Thekdy, A.C., and Vereeke, F.J. “Fuel Efficiency Improvement by Oxygen Enrichment of Combustion Air,” Ind. Heat, Vol.48, No.6, pp.22-23, 1981.
    20.Hu, Y., Naito, S., Kobayashi, N., Hasatani, M., “CO2 capture using oxygen enganced combustion strategies for natural gas power plants” Fuel, Vol. 79, Issue: 1-2, pp. 1925-1932, 2000
    21.Ho, K. K., Kim, Y., Lee, S. M.,and Ahn, K.Y. “NO reduction in 0.03-0.2 MW oxy-fuel combustor using flue gas recirculation technology.” Preceeding s of the Combustion Institute, Vol. 31, pp.3377-3384, 2007.
    22.Burke, S. P., and Schumann, T. E. W., “Diffusion Flames,” Industrial and Engineering Chemistry, Vol. 20, pp. 998-1004, 1928.
    23.Lewis, B., and Elbe, G., Combustion, Flames, and Explosions of Gases, Academic Press, New York, 1961
    24.Wohl, K., Kapp, N. M., and Gazley, C., “The Stability of Open Flames,” Symposium on Combustion and Flame, and Explosion Phenomena, Vol. 3, pp. 3-21, 1949.
    25.Wu, Y., Al-rahbi, I. S., and Kalghatgi, G. T., “The Stability of Turbulent Hydrogen Jet Flames with Carbon Dioxide and Propane Addition,” Fuel, Vol. 86, pp. 1840-1848, 2007.

    下載圖示 校內:2012-08-02公開
    校外:2015-08-02公開
    QR CODE