| 研究生: |
顧恩奇 Gu, En-Ci |
|---|---|
| 論文名稱: |
以有限差分時域法模擬量子谷霍爾效應之光學拓樸波導與共振腔 FDTD simulation of Photonics topological waveguides and Resonators by Quantum Valley Hall Effect |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | FDTD 、photonic crystal 、Valley Hall |
| 外文關鍵詞: | FDTD, photonic crystal, topological waveguide, topological resonator |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自2016年諾貝爾物理學獎頒給拓撲絕緣體的研究以來,這個領域在固態物理學界引起了大量的關注。拓撲絕緣體的研究不僅在凝聚態物理學中有廣泛的應用,而且在光子系統中也表現出卓越的性能。近年來的拓撲研究中有重大突破,提出了新的性質和應用,例如邊緣態和自旋極化。由於光子系統的能帶易於控制,因此在拓撲物質的研究中起著關鍵的作用。光子系統中的拓撲概念被用來描述物體在連續變化中仍能保持其能帶的拓撲完整性,這已經成為一個不可或缺的自由度。本篇論文通過谷霍爾理論模型和有限時域差分法(FDTD)的數值模擬方法研究了介電質拓撲絕緣體的拓撲性質,探討邊緣態的各種性質,與以其製成的共振腔對於缺陷的表現。這些結果對於深入理解光子拓撲物質的機制具有重要意義,並為拓撲光子態的應用提供了新的思路。這些研究可為未來量子計算、量子通信和光電器件等領域的應用提供了新的可能性。
Since the awarding of the 2016 Nobel Prize in Physics for research on topological insulators, this field has attracted a great deal of attention in the solid-state physics community. The study of topological insulators not only has broad applications in condensed matter physics, but also exhibits excellent performance in photonic systems. Recent breakthroughs in topological research have revealed some properties and applications, such as edge states and spin polarization. Due to the ease of controlling the energy bands in photonic systems, they play a key role in the study of topological materials. The concept of topology in photonic systems is used to describe how an object can maintain the topological properties of its energy bands during continuous changes, which has become an indispensable degree of freedom. This paper studies the topological properties of dielectric topological insulators of the Valley Hall model through the numerical simulation method of Finite-Difference Time-Domain (FDTD), explores various properties of edge states, and the performance of resonant cavities made from them with or without defects. These results are of great significance for a deep understanding of the mechanisms of photonic topological insulators and provide new ideas for the application of topological photonic states. These studies offer new possibilities for future applications in the fields of quantum computing, quantum communication, and optoelectronic devices.
[1] L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nature Photon 8(11), 821–829 (2014), doi: 10.1038/nphoton.2014.248.
[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. Den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett. 49(6), 405–408 (1982), doi: 10.1103/PhysRevLett.49.405.
[3] R. V. Gamkrelidze, Topological Groups. London: Routledge, 2018. doi: 10.1201/9780203735558.
[4] C. L. Kane and E. J. Mele, “Quantum Spin Hall Effect in Graphene,” Phys. Rev. Lett. 95 (22), 226801 (2005), doi: 10.1103/PhysRevLett.95.226801.
[5] P. Qiu et al., “Pseudospin Dependent One-Way Transmission in Graphene-Based Topological Plasmonic Crystals,” Nanoscale Res Lett 13 (1), 113 (2018),
doi: 10.1186/s11671-018-2538-x.
[6] J. Mei, Z. Chen, and Y. Wu, “Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals,” Sci Rep 6 (1), 32752 (2016),
doi: 10.1038/srep32752.
[7] Z.-G. Chen, J. Mei, X.-C. Sun, X. Zhang, J. Zhao, and Y. Wu, “Multiple topological phase transitions in a gyromagnetic photonic crystal,” Phys. Rev. A, 95 (4), 043827 (2017), doi: 10.1103/PhysRevA.95.043827.
[8] S. J. Palmer and V. Giannini, “Berry bands and pseudo-spin of topological photonic phases,” Phys. Rev. Research 3 (2), L022013 (2021),
doi: 10.1103/PhysRevResearch.3.L022013.
[9] F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett. 100 (1), 013904 (2008), doi: 10.1103/PhysRevLett.100.013904.
[10] 吳研慶, 利用光子晶體產生沿單一方向傳播的拓樸邊緣態, 成大光電所碩士論文 (2021), https://thesis.lib.ncku.edu.tw/thesis/detail/ f781c706f60dbfb090d68d93cd7abdb2/
[11] 劉家昇, 自旋霍爾與谷霍爾光子拓撲絕緣體的陳數計算, 成大光電所碩士論文 (2023), https://thesis.lib.ncku.edu.tw/thesis/detail/
6240be3bba3a857bc648d6892d940811/
[12] T. Ozawa et al., “Topological photonics,” Rev. Mod. Phys. 91 (1), 015006 (2019), doi: 10.1103/RevModPhys.91.015006.
[13] K. Von Klitzing, “The quantized Hall effect,” Rev. Mod. Phys. 58 (3), 519–531 (1986), doi: 10.1103/RevModPhys.58.519.
[14] F. D. M. Haldane, “Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ‘Parity Anomaly,’” Phys. Rev. Lett. 61 (18), 2015–2018 (1988), doi: 10.1103/PhysRevLett.61.2015.
[15] D. Griffiths, Introduction to Electrodynamics (4th ed.). Cambridge: Cambridge University Press, 2017. doi:10.1017/9781108333511.
[16] E. H. Hall, “On a New Action of the Magnet on Electric Currents,” American Journal of Mathematics 2 (3), 287–292 (1879), doi: 10.2307/2369245.
[17] M. Z. Hasan and C. L. Kane, “Colloquium : Topological insulators,” Rev. Mod. Phys. 82 (4), 3045–3067 (2010), doi: 10.1103/RevModPhys.82.3045.
[18] A. Bansil, H. Lin, and T. Das, “Colloquium: Topological band theory,” Rev. Mod. Phys. 88 (2), 021004 (2016), doi: 10.1103/RevModPhys.88.021004.
[19] B. Simon, “Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase,” Phys. Rev. Lett. 51 (24), 2167–2170 (1983), doi: 10.1103/PhysRevLett.51.2167.
[20] M. Sprinkle, et al., “First Direct Observation of a Nearly Ideal Graphene Band Structure. ” Physical Review Letters 103 (22), 226803 (2009), doi: 10.1103/PhysRevLett.103.226803
[21] H. Xue, Y. Yang, and B. Zhang, “Topological Valley Photonics: Physics and Device Applications.” Advanced Photonics Research 2(8), 2100013 (2021), doi: 10.1002/adpr.202100013
[22] X.-D, Chen, F.-L, Zhao, M, Chen, and J.-W, Dong, “Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation.” Phys. Rev. B, 96 (2), 020202 (2017), doi: 10.1103/PhysRevB.96.020202
[23] I. A. Sukhoivanov and I. V. Guryev, Photonic Crystals: Physics and Practical Modeling, Berlin: Springer, 2009. doi: 10.1007/978-3-642-02646-1.
[24] C. Kittel and P. McEuen, Introduction to Solid State Physics (Global ed., 9th ed.). New Jersey: Wiley, 2018.
[25] J.D. Joannopoulos, R.D. Meade and J.N. Winn, Photonic Crystals: Molding the Flow of Light (2nd. ed.). Princeton: Princeton University Press, 1995.
[26] Zhang et al., “Topological Creation of Acoustic Pseudospin Multipoles in a Flow-Free Symmetry-Broken Metamaterial Lattice,” Phys. Rev. Lett. 118 (8), 084303 (2017), doi: 10.1103/PhysRevLett.118.084303
[27] Wang et al, “Observation of Unidirectional Backscattering-Immune Topological Electromagnetic States,” Nature 461, pages772–775 (2009), doi: 10.1038/nature08293
[28] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation 14 (3), 302–307 (1966), doi: 10.1109/TAP.1966.1138693.
[29] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd ed.), Boston: Artech House, 2005.
[30] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114 (2), 185–200 (1994), doi: 10.1006/jcph.1994.1159.
[31] J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27 (5), 334–339(2000), doi: 10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A.
校內:2029-07-31公開