| 研究生: |
鄭凱元 Cheng, Kai-Yuan |
|---|---|
| 論文名稱: |
具備件熱交換器網路之最適化清洗排程 Optimal Cleaning Schedule for Spare-Supported Heat-Exchanger Networks |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 熱交換器網路 、結垢 、清洗排程 、備件 |
| 外文關鍵詞: | Heat-Exchanger Network, Spare, Cleaning Schedule |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現代化的化工製程中常會利用熱交換器網路(heat exchanger network, HEN)來回收廢熱。但在一般正常的操作情況下,在網路中每一熱交換器內隨時間產生的結垢現象是無法避免的,因此若沒有定期清洗,HEN就會無法達到原先預期的熱交換量。在過去研究中,Lavaja and Bagjewicz(2004)曾依據文獻中常用的結垢模式,建立出混整數非線性規劃(mixed-integer nonlinear programming, MINLP)模型,來決定出熱交換網路的最適清洗排程。雖然利用此一方式所得到的排程,可以有效降低因結垢導致熱回收不足所增加的額外公用流體成本,但清洗選定熱交換器的時期就必須停止原來製程所需熱交換工作,造成了額外公用流體的需求。因此本研究工作就是探討如何針對既有的熱交換網路配置備件,以便在清洗進行時取代無法提供服務的熱交換器。具體而言,我們修改傳統的MINLP模式的方法是引入了一組二元變數來代表在清洗時是否使用備件的選項,在相應最適解中,不但可決定清洗排程,還可決定備件總數、熱傳面積及使用時機。最後,在本論文中一系列的案例探討中也驗證了所提方法之可行性及有效性。
A well-designed heat-exchanger network (HEN) can often be adopted for maximum heat recovery in any modern chemical process. However, as time goes on under the normal operating conditions, fouling on the heat-exchange surface is unavoidable. If the heat-transfer units in a HEN are not cleaned regularly, the originally envisaged thermal efficiency can only be maintained for a short period of time.
Based on the published fouling models, Lavaja and Bagjewicz (2004) constructed a mixed-integer nonlinear program (MINLP) for synthesizing the optimal cleaning schedule of any given heat-exchanger network. Although this method could be used to produce schedules that effectively reduce the additional utility costs caused by fouling, the required cleaning operations still result in unnecessary utility consumption since the corresponding exchangers must be removed from duties.
The objective of this study is therefore to modify the aforementioned existing MINLP model so as to optimally assign spares to replace the units that are taken out of service for cleaning. Specifically, a set of binary variables are introduced and each is used to reflect whether a removed exchanger should be substituted with a spare. The corresponding optimal solution includes not only the cleaning schedule but also the total number of spares, their heat transfer areas and the substitution schedule. Finally, this thesis also provides the optimization results of a series of case studies to verify the feasibility and effectiveness of the proposed approach.
Alle, A., J. M. Pinto and L. G. Papageorgiou (2002)." Cyclic Production and Cleaning Scheduling of Multiproduct Continuous Plants". Computer Aided Chemical Engineering. G. Johan and S. Jan van, Elsevier. 10: 613-618.
Assis, B. C. G., J. C. Lemos, E. M. Queiroz, F. L. P. Pessoa, F. S. Liporace, S. G. Oliveira and A. L. H. Costa (2013). "Optimal Allocation of cleanings in heat exchanger networks." Applied Thermal Engineering 58(1-2): 605-614.
Georgiadis, M. C. and L. G. Papageorgiou (2000). "Optimal energy and cleaning management in heat exchanger networks under fouling." Chemical Engineering Research & Design 78(A2): 168-179.
Georgiadis, M. C., L. G. Papageorgiou and S. Macchietto (1999). "Optimal cyclic cleaning scheduling in heat exchanger networks under fouling." Computers & Chemical Engineering 23: S203-S206.
Gonçalves, C. d. O., E. M. Queiroz, F. L. P. Pessoa, F. S. Liporace, S. G. Oliveira and A. L. H. Costa (2014). "Heuristic optimization of the cleaning schedule of crude preheat trains." Applied Thermal Engineering 73(1): 1-12.
Ishiyama, E. M., A. V. Heins, W. R. Paterson, L. Spinelli and D. I. Wilson (2010). "Scheduling cleaning in a crude oil preheat train subject to fouling: Incorporating desalter control." Applied Thermal Engineering 30(13): 1852-1862.
Ishiyama, E. M., W. R. Paterson and D. I. Wilson (2011). "Optimum cleaning cycles for heat transfer equipment undergoing fouling and ageing." Chemical Engineering Science 66(4): 604-612.
Lavaja, J. H. and M. J. Bagajewicz (2004). "On a New MILP Model for the Planning of Heat-Exchanger Network Cleaning†." Industrial & Engineering Chemistry Research 43(14): 3924-3938.
Markowski, M. and K. Urbaniec (2005). "Optimal cleaning schedule for heat exchangers in a heat exchanger network." Applied Thermal Engineering 25(7): 1019-1032.
Pogiatzis, T. A., D. I. Wilson and V. S. Vassiliadis (2012). "Scheduling the cleaning actions for a fouled heat exchanger subject to ageing: MINLP formulation." Computers & Chemical Engineering 39: 179-185.
Sanaye, S. and B. Niroomand (2007). "Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule." Energy Conversion and Management 48(5): 1450-1461.
Smaïli, F., D. K. Angadi, C. M. Hatch, O. Herbert, V. S. Vassiliadis and D. I. Wilson (1999). "Optimization of Scheduling of Cleaning in Heat Exchanger Networks Subject to Fouling." Food and Bioproducts Processing 77(2): 159-164.
Smaïli, F., V. S. Vassiliadis and D. I. Wilson (2002). "Long-Term Scheduling of Cleaning of Heat Exchanger Networks." Chemical Engineering Research and Design 80(6): 561-578.
Xiao, F., J. Du, L. Liu, G. Luan and P. Yao (2010). "Simultaneous Optimization of Synthesis and Scheduling of Cleaning in Flexible Heat Exchanger Networks." Chinese Journal of Chemical Engineering 18(3): 402-411.