簡易檢索 / 詳目顯示

研究生: 謝承諺
Hsieh, Cheng-Yen
論文名稱: 以氧化鉍系氧離子導體作為固態氧化物燃料電池電解質之研究
Investigation of Using Bismuth Oxide based Oxygen Ion Conductors for Solid Oxide Fuel Cell Applications
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 122
中文關鍵詞: 氧化鉍電解質穩定性
外文關鍵詞: bismuth oxide, electrolyte, stability
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態電解質為具有離子導電特性之導電材料,在實際應用上需具備高導電性及穩定性。立方氟化鈣結構的高溫d相的氧化鉍(d-Bi2O3)具有25%氧離子空缺濃度,為氧離子導電率最高之氧化物,然而如此高的氧離子空缺濃度導致其結構在低於723℃以下之溫度並不穩定,要增加氧化鉍系氧離子導體的實用性必須增加立方相的穩定性,因此,本研究針對氧化鉍系氧離子導體,添加不同價數的陽離子(Ca2+、Y3+、Nb5+、W6+),探討添加物對其結構及導電性質的影響,藉由觀察其在氫氣環境下的穩定性,評估其作為固態氧化物燃料電池電解質材料的可行性,最後將氧化鉍系固態電解質薄膜化並結合陰、陽極,組裝為陽極支撐固態氧化物燃料電池進行電力密度的量測。
    以陽離子半徑較小的Y2O3作為添加劑,燒結後雖可形成立方晶系氟化鈣結構(Y0.15Bi0.85)2O3及(Y0.2Bi0.8)2O3,空氣中600°C熱處理10 h,立方晶系氟化鈣結構即相變為菱方結構,而在氫氣環境下350°C熱處理5 h固溶體還原為Bi金屬及Y2O3,顯示其立方晶系氟化鈣結構不穩定。以高於三價之Nb5+及W6+取代Bi3+,將減少氧化鉍系氧離子導體的氧離子空缺濃度,燒結後可形成立方晶系氟化鈣結構(Nb0.2Bi0.8)2O3.4及正方結構(W0.15Bi0.85)2O3.45,其中正方結構(W0.15Bi0.85)2O3.45為立方晶系氟化鈣結構的超晶格,此兩者固溶體在空氣中600°C熱處理1000 h或在氫氣環境下400°C熱處理100 h,皆維持穩定,導電率則略低於Y2O3-Bi2O3系統,700℃約為10-2 S/cm。以Y2O3作為添加劑取代(W0.15Bi0.85)2O3.45中Bi3+的位置,可縮小Bi3+和W6+離子半徑的差異,進而消除Bi3+和W6+有序排列的現象,可獲得穩定的立方晶系氟化鈣結構(Y0.1W0.15Bi0.75)2O3.45,同時可提升導電率,700℃約為2.38 ´ 10-2 S/cm。以部分Ca2+取代(W0.15Bi0.85)2O3.45中Bi3+的位置,將產生氧離子空缺以維持結構之電中性,晶體結構仍為正方結構,然而氫氣環境下400°C熱處理100 h後,出現Bi金屬及CaWO4的生成,顯示氧離子空缺濃度的增加,導致還原反應的發生。
    本研究中,單相且在氫氣環境下穩定的(Nb0.2Bi0.8)2O3.4、(W0.15Bi0.85)2O3.45及(Y0.1W0.15Bi0.75)2O3.45有潛力作為固態氧化物燃料電池電解質材料,然而常用之鍶摻雜錳酸鑭(La0.8Sr0.2MnO3-δ)陰極與(Nb0.2Bi0.8)2O3.4及(Y0.1W0.15Bi0.75)2O3.45在900°C持溫20 h後,有反應物LaBiO3.68與Sr0.67Bi1.33O2.67生成,僅(W0.15Bi0.85)2O3.45不與La0.8Sr0.2MnO3-δ反應。將(W0.15Bi0.75)2O3.45固態電解質置於燃料電池測試環境下,於陽極通入不同的氧分壓,其電動勢在400°C皆約為0.6 V,主要原因為(W0.15Bi0.75)2O3.45固態電解質在低氧分壓環境下發生Bi2O3->Bi還原反應,因而在(W0.15Bi0.75)2O3.45固態電解質陽極端形成Bi2O3/Bi平衡氧分壓,導致其電動勢維持一固定值。
    本研究最後以Pt-(W0.15Bi0.75)2O3.45做為複合陽極基材,結合60 mm的(W0.15Bi0.75)2O3.45固態電解質及20 mm的(W0.15Bi0.85)2O3.45/La0.8Sr0.2MnO3-δ複合陰極,成為陽極支撐(W0.15Bi0.75)2O3.45系固態氧化物燃料電池,於400及450℃測試時,最大電力密度分別為0.76及1.23 mW/cm2。根據本研究對氧化鉍系氧離子導體結構穩定性及電池測試之結果,高導電之氧化鉍系氧離子導體有潛力運用於固態氧化物燃料電池電解質。

    In solid oxide fuel cell (SOFC), solid-state electrolytes are materials possessing defects and high ionic conductivity. For practical applications, solid electrolytes require high ionic conductivity and stability. Up to date, the oxygen ionic conductor with highest ionic conductivity is the high temperature cubic Bi2O3 namely, d-Bi2O3. However, the d phase is not stable below 723℃, and undergoes a phase transformation to a monoclinic phase due to the high oxygen vacancy concentration (25%). The stability of the cubic phase must be enhanced for practical applications. Therefore, the aim of this study was to investigate the effect of aliovalent dopants, Ca2+, Y3+, Nb5+ and W6+ on the crystal structures, conductivities and the stability of Bi2O3-based solid electrolytes after exposed to H2. Finally, the anode-supported Bi2O3-based SOFC was assembled and tested using H2 as the fuel and O2 as the oxidant.
    Y2O3 was selected as dopants due to the smaller cation radius than Bi3+. The samples were synthesized by solid state reaction. The as-sintered (Y0.15Bi0.85)2O3 and (Y0.2Bi0.8)2O3 exhibited a cubic lattice. However, the cubic (Y0.15Bi0.85)2O3 and (Y0.2Bi0.8)2O3 transformed to rhombohedral phase when annealed at 600 ℃ for 10 h. Additionally, after annealing in H2 at 350°C for 5 h, (Y0.15Bi0.85)2O3 and (Y0.2Bi0.8)2O3 were reduced to metallic Bi and Y2O3. The addition of Nb2O5 or WO3 into Bi2O3 decreased the oxygen vacancy concentration. The as-sintered (Nb0.2Bi0.8)2O3.4 exhibited a cubic lattice while as-sintered (W0.15Bi0.85)2O3.45 exhibited a tetragonal structure derived from the fluorite subcell. Both cubic (Nb0.2Bi0.8)2O3.4 and tetragonal (W0.15Bi0.85)2O3.45 were stable after annealing at 600℃ for 1000 h in air or at 400°C for 100 h in H2. The addition of Y2O3 is capable of minimizing the mismatch in ionic radius between Bi and W ions. Therefore, the co-addition of Y2O3 and WO3 is able to stabilize cubic (Y0.1W0.15Bi0.75)2O3.45. Moreover, the conductivity is 2.38 ´ 10-2 S cm-1 at 700°C and slightly higher than that of (WO3)0.15(BiO1.5)0.85(1.5 ´ 10-2 S cm-1). Cubic (Y0.1W0.15Bi0.75)2O3.45 was stable after annealing at 600 ℃ for 1000 h in air or at 400°C for 100 h in H2. (Ca0.1W0.15Bi0.75)2O3.35 exhibited a tetragonal structure derived from the fluorite subcell. However, (Ca0.1W0.15Bi0.75)2O3.35 was reduced to Bi and CaWO4 after annealing at 400°C for 100 h in H2. The addition of CaO into (W0.15Bi0.85)2O3.45 increased oxygen vacancy concentration. It is suggested that the increase of oxygen vacancy concentration resulted in reduction.
    In this Study, (Nb0.2Bi0.8)2O3.4, (W0.15Bi0.85)2O3.45 and (Y0.1W0.15Bi0.75)2O3.45 were potential electrolyte materials. Moreover, no reaction between La0.8Sr0.2MnO3-δ cathode and (W0.15Bi0.85)2O3.45 was observed at 900℃. The e. m. f. of (W0.15Bi0.85)2O3.45 electrolyte was about 0.6 V at 400 ℃ when anode was in different oxygen partial pressures. The reason was that the reduction of Bi2O3®Bi occurred for (W0.15Bi0.85)2O3.45 electrolyte in low oxygen partial pressure. Therefore, the anode side of (W0.15Bi0.85)2O3.45 was under the equilibrium partial pressure of Bi2O3/Bi.
    In this study, the 60 mm (W0.15Bi0.85)2O3.45 electrolyte was deposited onto the (W0.15Bi0.85)2O3.45-Pt anode using tape casting method. The 20 mm (W0.15Bi0.85)2O3.45-La0.8Sr0.2MnO3-δ cathode was applied on (W0.15Bi0.85)2O3.45 using screen printing technique. Finally, the anode-supported Bi2O3-based SOFC was tested using H2 as the fuel and O2 as the oxidant. The power densities were 0.76 and 1.23 mW/cm2 at 400 and 450℃, respectively. According to these results, Bi2O3-based oxygen ion conductor is a potential electrolyte for SOFC.

    摘要 I Abstract III 致謝 V 總目錄 VI 圖目錄 X 表目錄 XV 重要名詞英漢對照及符號說明 XVI 第一章、緒論 1 1-1、前言 1 1-2、研究動機及目的 2 第二章、原理及文獻回顧 3 2-1、固態氧化物燃料電池的簡介 3 2-2、Bi2O3的性質 8 2-2-1、δ-Bi2O3 8 2-3、Bi2O3-M2O3系統 11 2-3-1、Bi2O3-Y2O3 11 2-4、Bi2O3-M2O5系統 15 2-5、Bi2O3-MO3系統 17 2-6、Aurivillius 層狀鈣鈦礦系統 19 第三章、實驗步驟及方法 22 3-1、化學藥品選用 24 3-2、氧化鉍系固溶體之合成 24 3-3、氫氣下熱處理 24 3-4、氧化鉍系單電池之製備 24 3-4-1、多孔陽極 24 3-4-2、氧化鉍系電解質薄膜 27 3-4-3、多孔陰極 27 3-5、X-光繞射分析 27 3-6、SEM顯微結構觀察及EPMA定量分析 27 3-7、延伸X光吸收精細結構(EXAFS) 29 3-8、導電性質量測 29 3-9、氧化鉍系單電池性能及電動勢之量測 30 第四章、氧離子空缺濃度對Bi2O3晶體結構的影響 32 4-1、Y2O3-Bi2O3固溶體晶體結構的穩定性 32 4-1-1、Y2O3-Bi2O3固溶體600oC的熱穩定性 32 4-1-2、氫氣環境下Y2O3-Bi2O3固溶體的還原現象 34 4-1-3、氫氣環境下Y2O3-Bi2O3固溶體EXAFS分析 40 4-2、Nb2O5-Bi2O3固溶體晶體結構的穩定性 41 4-2-1、Nb2O5-Bi2O3固溶體600oC的熱穩定性 41 4-2-2、氫氣環境下Nb2O5-Bi2O3固溶體的穩定性 46 4-3、六價鎢離子的添加對Bi2O3晶體結構的影響 52 4-4、Y2O3及WO3雙添加對Bi2O3晶體結構及穩定性的影響 57 4-4-1、Y2O3及WO3雙添加對Bi2O3晶體結構的影響 57 4-4-2、Y2O3及WO3雙添加對Bi2O3晶格常數的影響 60 4-4-3、Y2O3及WO3雙添加對Bi2O3在600℃熱穩定性的影響 62 4-4-4、Y2O3及WO3雙添加對Bi2O3結構在氫氣環境下穩定性的影響 64 4-5、CaO及WO3雙添加對Bi2O3晶體結構及穩定性的影響 71 4-5-1、CaO及WO3雙添加對Bi2O3晶體結構的影響 71 4-5-2、CaO及WO3雙添加對Bi2O3晶體結構穩定性的影響 75 第五章、氧離子空缺濃度對Bi2O3導電性質的影響 81 5-1、單一添加劑對Bi2O3導電性質的影響 81 5-2、Y2O3及WO3雙添加對Bi2O3導電性質的影響 83 5-3、CaO及WO3雙添加對Bi2O3導電性質的影響 86 第六章、以氧化鉍系固溶體作為固態氧化物燃料電池電解質之可行性評估 90 6-1、Bi2O3系固溶體與La0.8Sr0.2MnO3-δ陰極材料之高溫穩定性 90 6-1-1、(Nb0.2Bi0.8)2O3.4與La0.8Sr0.2MnO3-δ陰極材料之高溫熱穩定性 90 6-1-2、(W0.15Bi0.85)2O3.45與La0.8Sr0.2MnO3-δ陰極材料之高溫熱穩定性 92 6-1-3、(Y0.1W0.15Bi0.75)2O3.45與La0.8Sr0.2MnO3-δ陰極材料之高溫熱穩定性 92 6-2、(W0.15Bi0.85)2O3.45固態電解質兩端不同氧分壓差異下之電動勢 95 6-3、以(W0.15Bi0.85)2O3.45作為電解質材料之單電池測試 98 6-3-1、陽極支撐(W0.15Bi0.75)2O3.45系SOFC之製備 98 6-3-2、(W0.15Bi0.85)2O3.45 - La0.8Sr0.2MnO3-δ / (W0.15Bi0.75)2O3.45/ Pt - (W0.15Bi0.75)2O3.45單電池測試 101 第七章、總結論 106 參考文獻 109 自述 119

    1. N. Q. Minh, ”Ceramic fuel cells”, J. Am. Ceram. Soc., 76[3], 563-588, 1993.
    2. S. C. Singhal, “Science and technology of solid-oxide fuel cells”, Mat. Res. Bull., 25[3], 16-21, 2000.
    3. N. Q. Minh, “Solid oxide fuel cell technology - features and applications”, Solid State Ionics, 174, 271-277, 2004.
    4. H. Inaba and H. Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, 83, 1-16, 1996.
    5. V. V. Kharton, F. M. B. Marques and A. Atkinson, “Transport properties of solid oxide electrolyte ceramics: a brief review”, Solid State Ionics, 174, 135-149, 2004.
    6. S. P. S. Badwal and K. Foger, “Solid oxide electrolyte fuel cell review”, Ceram. Int., 22, 257-265, 1996.
    7. H. Yokokawa, N. Sakai, T. Horita, K. Yamaji and M. E. Brito, “Electrolytes for solid-oxide fuel cells”, Mat. Res. Bull., 30 [3], 591-595, 2005.
    8. J. Larminie and A. Dicks, Fuel cell systems explained, 2nd edition, J. Wiley, New York, 14-16, 2003.
    9. P. D. Battle, C. R. A. Catlow, J. W. Heap and L. M. Moroney, “Structural and dynamic studies of delta-Bi2O3 oxide ion conductors.1. The structure of (Bi2O3)1-x(Y2O3)x as a function of x and temperature”, J. Solid State Chem., 63, 8-15, 1986.
    10. A. V. Joshi, S. Kulkarni, J. Nachlas, J. Diamond and N. Weber, “Phase-stability and oxygen-transport characteristics of yttria-stabilized and niobia-stabilized bismuth oxide”, J. Mater. Sci., 25[2B], 1237-1245, 1990.
    11. K. Z. Fung and A. V. Vikar, “Phase-stability, phase-transformation kinetics, and conductivity of Y2O3-Bi2O3 solid electrolytes containing aliovalent dopants”, J. Am. Ceram. Soc., 74, 1970-1980, 1991.
    12. K. Z. Fung, J. Chen and A. V. Vikar, “Effect of aliovalent dopants on the kinetics of phase-transformation and ordering in Re2O3-Bi2O3 (Re = Yb, Er, Y, or Dy) solid-solutions”, J. Am. Ceram. Soc., 76, 2403-2418, 1993.
    13. T. Takahashi, T. Esaka and H. Iwahara, “Conduction in Bi2O3-based oxide ion conductors under low oxygen-pressure.1. Current blackening of Bi2O3-Y2O3 electrolyte”, J. Appl. Electrochem., 7, 299-302, 1977.
    14. M. J. Verkerk and A. J. Burggraaf, “Free-energy of formation of stabilized Bi2O3 (fcc) from e.m.f. measurements”, J. Appl. Electrochem., 10, 677-681, 1980.
    15. M. J. Verkerk and A. J. Burggraaf, “High oxygen ion conduction in sintered oxides of the Bi2O3-Ln2O3 system”, Solid State Ionics, 3/4, 463467, 1981.
    16. E. D. Wachsman, G. R. Ball, N. Jiang, and D. A. Stevenson, “Structural and defect studies in solid oxide electrolytes”, Solid State Ionics, 52, 213-218, 1992.
    17. R. M. Ormerod, “Solid oxide fuel cells”, Chem. Soc. Rev., 32, 17-28, 2003.
    18. R. E. W. Casselton, “Blackening in yttria stabilized zirconia due to cathodic processes at solid platinum-electrodes”, J. Appl. Electrochem., 4, 25-48, 1974.
    19. T. H. Etsell and S. N. Flengas, “Electrical properties of solid oxide electrolytes”, Chem. Rev., 70, 339-376, 1970.
    20. W. C. Schumb and E. S. Rittner, “Ploymorphism of bismuth trioxide”, J. Am. Chem. Soc., 65, 1055-1060, 1943.
    21. H. A. Harwig and A. G. Gerards, “The polymorphism of bismuth sesquioxide”, Thermochim. Acta, 28, 121-131, 1979.
    22. N. M. Sammes, G. A. Tompsett, H. Nafe and F. Aldinger, “Bismuth based oxide electrolytes - Structure and ionic conductivity”, J. Eur. Ceram. Soc., 19, 1801-1826, 1999.
    23. C. N. R. Rao, G. V. Subba Rao, and S. Ramdas, “Phase transformations and electrical properties of bismuth sesquioxide”, The J. Phys. Chem., 73, 672-675, 1969.
    24. A. M. Azad, S. Larose, S. A. Akbar, “Bismuth oxide-based solid electrolytes for fuel-cells”, J. Mater. Sci., 29, 4135-4151, 1994.
    25. P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3”, Solid State Ionics, 89, 179-196, 1996.
    26. H. A. Harwig and A. G. Gerards, “Electrical-properties of alpha, beta, gamma and delta phases of bismuth sesquioxide”, J. Solid State Chem., 26, 265-274, 1978.
    27. T. Takahashi, H. Iwahara and Y. Nagai, “High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3”, J. Appl. Electrochem., 2, 97-104, 1972.
    28. A. Laarif and F. Theobald, “The lone pair concept and the conductivity of bismuth oxides Bi2O3”, Solid State Ionics, 21, 183-193, 1986.
    29. J. C. Boivin and G. Mairesse, “Recent material developments in fast oxide ion conductors”, Chem. Mater., 10, 2870-2888, 1998.
    30. R. K. Datta and J. P. Meehan, “System Bi2O3-R2O3 (R=Y, Gd)”, Z. Anorg. Allg. Chem., 383, 328-337, 1971.
    31. L. G. Sillen, “X-ray studies of bismuth trioxide”, Arkiv för Kemi, Mineralogi och Geologi, 12A, 1-15, 1937.
    32. G. Gattow and H. Schroder, “Bismuth oxide. III. The crystal structure of the high temperature modification of bismuth (III) oxide (d-Bi2O3)”, Z. Anorg. Allg. Chem., 318 176-189, 1962.
    33. H. Kruidhof, K. J. Devries and A. J. Burggraaf, “Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid-solutions”, Solid State Ionics, 37, 213-215, 1990.
    34. T. Takahashi and H. Iwahara, “Oxide ion conductors based on bismuth sesquioxide”, Mater. Res. Bull., 13, 1447-1453, 1978.
    35. A. Watanabe and T. Kikuchi, “Cubic hexagonal transformation of yttria-stabilized delta-bismuth sesquioxide, Bi2-2xY2xO3 (x=0.215-0.235)”, Solid State Ionics, 21, 287-291, 1986.
    36. A. Watanabe, “Is it possible to stabilize d-Bi2O3 by an oxide additive?”, Solid State Ionics, 40/41, 889-892, 1990.
    37. C. Z. Wang, X. G. Xu, and B. Z. Li, “Ionic and electronic conduction of oxygen ion conductors in the Bi2O3-Y2O3 system”, Solid State Ionics, 13, 135-140, 1984.
    38. P. Duran, J. R. Jurado, C. Moure, N. Valverde and B. C. H. Steele, “High oxygen ion conduction in some Bi2O3-Y2O3 (Er2O3) solid-solutions”, Mater. Chem. Phys., 18, 287-294, 1987.
    39. T. Takahashi, H. Iwahara and T. Esaka, “High oxide ion conduction in sintered oxide of system Bi2O3-M2O5”, J. Electrochem. Soc., 124, 1563-1569, 1977.
    40. V. J. Powers, “Electrical properties and phase stability in the high oxygen conducting system”, Ph D. thesis, Ohio State University, 1989.
    41. G. Y. Meng, C. S. Chen, X. Han, P. H. Yang, and D. K. Peng, “Conductivity of Bi2O3-based oxide ion conductors with double stabilizers”, Solid State Ionics, 28, 533-538, 1988.
    42. T. Takahashi, T. Esaka, and H. Iwahara, “Oxide ion conduction in sintered oxides of MoO3-doped Bi2O3”, J. Appl. Electrochem., 7, 31-35, 1977.
    43. S. N. Hoda and L. L. Y. Chang, “Phase relations in system Bi2O3-WO3”, J. Am. Ceram.Soc., 57, 323-326, 1974.
    44. N. M. Sammes and G. J. Gainsford, “Phase-stability and oxygen-ion conduction in Bi2O3-Pr6O11”, Solid State Ionics, 62, 179-184, 1993.
    45. M. Nespolo, A. Watanabe and Y. Suetsugu, “Re-investigation of the structure of 7Bi2O3·2WO3 by single-crystal X-ray diffraction”, Cryst. Res. Technol., 37, 414-422, 2002.
    46. N. Sharma, R. B. Macquart, M. Avdeev, M. Christensen, G. J. Mclntyre, Y. -S. Chen and C. D. Ling, “Re-investigation of the structure and crystal chemistry of the Bi2O3-W2O6 'type (Ib)' solid solution using single-crystal neutron and synchrotron X-ray diffraction”, Acta Crystallogr. B, B66, 165-172, 2010.
    47. T. Takahashi and H. Iwahara, “High oxide ion conduction in sintered oxides of the system Bi2O3-WO3”, J. Appl. Electrochem., 3, 65-72, 1973.
    48. M. S. Islam, S. Lazure, R. –N. Vannier, G. Nowogrocki and G. Maresse, “Structural and computational studies of Bi2WO6 based oxygen ion conductors”, J. Mater. Chem., 8, 655-660, 1998.
    49. K. R. Kendall, C. Navas, J. K. Thomas and H. –C. Z. Loye, “Recent developments in oxide ion conductors: Aurivillius phases”, Chem. Mater., 8, 642-649, 1996.
    50. K. S. Knight, “The crystal-structure of russellite - a redetermination using neutron powder diffraction of synthetic Bi2WO6”, Mineral. mag., 56, 399-409, 1992.
    51. J. Yan and M. Greenblatt, “Ionic conductivities of Bi4V2-xMxO11-x/2 (M=Ti, Zr, Sn, Pb) solid-solutions”, Solid State Ionics, 81, 225-233, 1995.
    52. F. Abraham, J. C. Boivin, G. Mairesse and G. Nowogrocki, “The BIMEVOX series - a new family of high performances oxide ion conductors”, Solid State Ionics, 40/41, 934-937, 1990.
    53. T. Iharada, A. Hammouche, J. Foultier, M. Kleitz, J. C. Boivin and G. Mairesse, “Electrochemical characterization of BIMEVOX oxide-ion conductors”, Solid State Ionics, 48, 257-265, 1991.
    54. M. Anne, M. Bacmann, E. Pernot, F. Abraham, G. Mairesse and P. Strobel, “Structure of new anionic conductors Bi4V21-xM2xO11-3x M = Cu, Ni”, Physica. B, 180, 621-623, 1992.
    55. E. Pernot, M. Anne, M. Bacmann, P. Strobel, J. Foultier, R. N. Vannier, G. Mairesse, F. Abraham and G. Nowogrocki, “Structure and conductivity of Cu and Ni-substituted Bi4V2O11 compounds”, Solid State Ionics, 70, 259-263, 1994.
    56. A. J. Francklin, A. V. Chadwick and J. W. Couves, “Thermoelectric-power studies of bismuth-based oxides”, Solid State Ionics, 70, 215-220, 1994.
    57. V. Sharma, A. K. Shukla and J. Gopalakrishnan, “Effect of aliovalent-cation substitution on the oxygen-ion conductivity of Bi4V2O11”, Solid State Ionics, 58, 359-362, 1992.
    58. N. Baux, R. N. Vannier, G. Mairesse, G. Nowogrocki, “Oxide ion conductivity in Bi2W1-xMExO6-x/2 (ME=Nb, Ta)”, Soild State Ionics, 91, 243-248, 1996.
    59. C. K. Lee, L. T. Sim, A. M. Coats and A. R. West, “On possible Cu doping of Bi2WO6”, J. Mater. Chem., 11, 1096-1099, 2001.
    60. R. N. Vannier, G. Nowogrocki and G. Mairesse, “Regarding the existence of the Bi2W1-xCuxO6-2x (0.7 £ x £ 0.8) solid-solution”, J. Mater. Chem., 5, 361-363, 1995.
    61. P. J. Gellings, H. J. M. Bouwmeester, The CRC Handbook of Solid State Electrochemistry, Fla.:CRC Press, Boca Raton, 82, 1997.
    62. R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Cryst, A32, 751-767, 1976
    63. D. Mercurio, M. El Farissi, B. Frit, J. M. Reau and J. Senegas, “Fast ionic-conduction in new oxide materials of the Bi2O3-Ln2O3-TeO2 systems (Ln = La, Sm, Gd, Er)”, Solid State Ionics 39, 297-304, 1990.
    64. D. Mercurio, M. El Farissi, J. C. Champarnaud-Mesjard, B. Frit, P. Conflant and G. Roult, “Structural study of the mixed-oxide Bi0.7La0.3O1.5 using single-crystal X-ray-diffraction and powder neutron-diffraction”, J. Solid State Chem., 80, 133-143, 1989.
    65. 黃崇真,”氧化鈮摻雜對(Bi2O3)0.73(MO)0.27 (M=Ca, Sr, Ba)氧離子導體相變及導電性質之影響”,國立成功大學材料科學及工程學系碩士論文,中華民國九十八年。
    66. J. Emsley, The Elements, Clarendon Press, Oxford, 30-31, 1989.
    67. M. Newville, “Fundamentals of XAFS”, University of Chicago, Chicago, 7-8, 2004.
    68. R. Punn, I. Gameson, F. Berry and C. Greaves, “The local environment of cations in Bi12.5Er1.5ReO24.5”, J. Phys. Chem. Solids, 69, 2687-2690, 2008.
    69. N. Kamijo, H. Kageyama and K. Koto, “Edge and EXAFS studies of Bi2O3-Y2O3 oxygen conductor”, J. Phys. Soc. Jpn., 55, 2217-2231, 1986.
    70. S. F. Radaev, V. I. Simonov and Yu. F. Kargin, “Structural features of gamma-phase Bi2O3 and its place in the sillenite family” Acta Cryst., B48, 604-609, 1992.
    71. L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, New York, 1960.
    72. S. S. Zumdahl, Chemistry, 4th ed, Houghton Mifflin, Boston, 1997.
    73. J. A. Rodriguez, J. C. Hanson, A. I. Frenkel, J. Y. Kim, and M. Pérez, “Experimental and theoretical studies on the reaction of H2 with NiO: Role of O vacancies and mechanism for oxide reduction”, J. Am. Chem. Soc., 124, 346-354, 2002.
    74. A. Watanabe, “An outline of the structure of 7Bi2O3·2WO3 and its solid solutions”, J. Solid State Chem., 60, 252-257, 1985.
    75. W. Zhou, “Defect fluorite superstructures in the Bi2O3-WO3 system”, J. Solid State Chem., 108, 381-394, 1994.
    76. M. S. Islam, S. Lazure, R. N. Vannier, G. Nowogrocki, G. Mairesse, “Structural and computational studies of Bi2WO6 based oxygen ion conductors”, J. Mater. Chem., 8, 655-660, 1998.
    77. A. A. Yaremchenko, V. V. Kharton, E. N. Naumovich, A. A. Tonoyan and V. V. Samokhval, “Oxygen ionic transport in Bi2O3-based oxides: II. The Bi2O3-ZrO2-Y2O3 and Bi2O3-Nb2O5-Ho2O3 solid solutions”, J. Solid State Electrochem., 2, 308-314, 1998.
    78. M. Benkaddour, M. C. Steil, M. Drache and P. Conflant, “The influence of particle size on sintering and conductivity of Bi0.85Pr0.105V0.045O1.545 ceramics”, J. Solid State Chem., 155, 273-279, 2000.
    79. M. G. Lazarraga, F. Pico, J. M. Amarilla, R. M. Rojas and J. M. Rojo, “The cubic Bi1.76U0.12La0.12O3.18 mixed oxide: Synthesis, structural characterization, thermal stability and electrical properties”, Solid State Ionics, 176, 2313-2318, 2005.
    80. S. G. Huang, G. M. Zhou and Y Xie, “Electrochemical performances of Ag-(Bi2O3)0.75(Y2O3)0.25 composite cathodes”, J. Alloys Compd., 464, 322-326, 2008.
    81. Z. Y. Jiang, L. Zhang, L. L. Cai and C. R. Xia, “Bismuth oxide-coated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells with yttria-stabilized zirconia electrolytes”, Electrochim. Acta, 54, 3059-3065, 2009.
    82. T. Takahashi, T. Esaka, and H. Iwahara, “Conduction in Bi2O3-based oxide ion conductor under low oxygen-pressure. 2. Determination of partial electronic conductivity”, J. Appl. Electrochem., 7, 303-308, 1977.
    83. M. Malys, M. Holdynski, F. krok, W. Wróbel, J. R. Dygas, C. Pirovano, R. –N. Vannier, E. Capoen and I. Abrahams, “Investigation of transport numbers in yttrium doped bismuth niobates”, J. Power Sources, 194, 16-19, 2009.
    84. D. R. Gaskell, Introduction to the Thermodynamics of Materials Third Editor, Washington D.C., Taylor & Francis, 544-545, 1995.
    85. D. Chatterji and J. V. Smith, “Free-energy of formation of Bi2O3, Sb2O3, and TeO2 from e.m.f.-measurements”, J. Electrochem. Soc., 120, 889-893, 1973.
    86. G. M. Mehrotra, M. G. Frohberg and M. L. Kapoor, “Standard free-energy of formation of Bi2O3”, Z. Phys. Chem. N. F., 99, 304-307, 1976.
    87. H. T. Cahen, M. J. Verkerk and G. H. J. Broers, “Gibbs free-energy of formation of Bi2O3 from e.m.f. cells with delta-Bi2O3 solid electrolyte”, Electrochim. Acta, 23, 885-889, 1978.
    88. EG&G Technical Services, Inc. “Fuel Cell Handbook”, Seventh Edition, U.S. DOE Morgantown, West Virginia, 2004
    89. C. W. Tanner, K. Z. Fung, and A. V. Virkar, “The effect of porous composite electrode structure on solid oxide fuel cell performance. 1. Theoretical analysis”, J. Electrochem. Soc., 144, 21-30, 1997.
    90. T. Horita, K. Yamaji, M. Ishikawa, N. Sakai, H. Yokokawa, T. Kawada, and T. Kato, “Active sites imaging for oxygen reduction at the La0.9Sr0.1MnO3-x/yttria-stabilized zirconia interface by secondary-ion mass spectrometry”, J. Electrochem. Soc., 145, 3196-3202, 1998.
    91. J. Mizusaki, Y. Yonemura, H. Kamata, K. Ohyama, N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya, T. Sasamoto, H. Inaba, and T. Hashimpto,” Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3”, Solid State Ionics, 132, 167-180, 2000.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE