簡易檢索 / 詳目顯示

研究生: 黃敬泓
Huang, Jing-hung
論文名稱: 常溫電漿改質PET纖維接枝丙烯酸去除重金屬離子之研究
Application of low-temperature plasma modified acrylic acid grafted PET fibers for the removal of heavy metals
指導教授: 張祖恩
Chang, Juu-en
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 90
中文關鍵詞: 接枝丙烯酸PET纖維常溫電漿重金屬去除
外文關鍵詞: low-temperature plasma, PET fiber, graft acrylic acid, heavy metal removal
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用常溫電漿具改質材料表面之功能,活化PET纖維表面並進行接枝程序。期間探討不同電漿處理參數(電漿功率、氣體壓力、處理時間)、接枝環境參數(接枝溫度、丙烯酸單體濃度、接枝時間)對PET纖維活化及接枝影響,在最適接枝參數下探討離子交換材對重金屬離子的吸附行為及效能。評估常溫電漿結合接枝技術製備離子交換材於廢水處理應用之可行性。
    實驗結果顯示PET纖維經氧氣電漿於功率1200W、處理時間10秒;氬氣電漿於功率800W、處理時間10秒處理下有最佳的水分散失率。於接枝程序中,接枝溫度90℃、丙烯酸單體濃度6M、反應時間5小時丙烯酸接枝效果最佳,於氧氣電漿處理下接枝率可達5.26%。以上述表面改質條件、丙烯酸接枝條件製備離子交換材,探討後續吸附行為,於鹼化濃度0.1N,溶液pH=6、反應溫度60℃有最好的吸附效果,銅離子吸附量達4.266mg/g-polymer;鎵離子吸附量可達2.056 mg/g-polymer。且其吸附行為符合Freundlish 吸附模式,反應熱值為13.74 kJ/mol,為一物理吸熱反應。
    常溫電漿改質PET纖維接枝丙烯酸具低耗能、快速方便等特質,所製成之離子交換材亦有良好之眾金屬離子去除能力,具開發廢水處理應用之潛力。

    In this research, the surface modification of PET fiber applying low temperature plasma activation and acrylic acid grafting was studied. The operating parameters such as power, reactive or inert gas application, gas pressure, reaction in low temperature plasma activation treatment and the grafting temperature, acrylic acid concentration, grafting time in grafting treatment were also discussed in this work. The acrylic acid grafted PET fiber, (ion exchanger) were used in heavy metal removal. The adsorption behavior, the SEM-EDS and the FTIR analysis were applied to demonstrate the performance and the function of the grafted materials.
    Results from the PET surface modification showed that the optimum treatment is oxygen plasma with the power of 1200W, 10 seconds treatment time and argon plasma with the power of 800W, 10 seconds treatment time. The maximum grafting percentage 5.26% was obtained with the condition of grafting temperature 90, acrylic acid concentration as 6M, grafting time 5hr. Results from the metal removal programs showed that the adsorption of copper and gallium were 4.266mg/g-polymer and 2.056mg/g-polymer respectively under upon optimum surface modification and grafting condition. The adsorption behaviors were characterized as Freundlish adsorption modal and adsorption heat was calculated as 13.74 kJ/mol. It showed the reaction to be an endothermic reaction.
    With the advantage of low energy cost, convenient and environmental friendly process, the heavy metal removal by acrylic acid grafted PET fiber might be applied in wastewater treatments in near future.

    中文摘要 I 英文摘要 Ⅱ 誌謝 IV 目錄 VI 表目錄 IX 圖目錄 X 第一章 前言 1 1-1研究動機與目的 1 1-2研究內容與方法 1 第二章 文獻回顧 3 2-1重金屬廢水現況 3 2-1-1重金屬廢水的來源及性質 3 2-1-2重金屬廢水的處理問題及發展 4 2-2電漿原理及應用 5 2-2-1電漿原理 6 2-2-2電漿應用 9 2-3聚對苯二甲酸乙二酯之性質及應用 16 2-3-1高分子聚合基本原理 16 2-3-2聚對苯二甲酸乙二酯纖維的基本特性 18 2-3-3聚對苯二甲酸乙二酯纖維之應用 18 2-4丙烯酸單體之特性及接枝應用 20 2-4-1丙烯酸單體之特性 20 2-4-2單體接枝共聚合原理 21 2-4-3丙烯酸單體之接枝應用 24 2-5小結 24 第三章 實驗設備、材料與方法 26 3-1研究架構及實驗流程 26 3-2實驗設備及材料 28 3-2-1實驗設備 28 3-2-2實驗藥品 29 3-3實驗步驟及方法 30 3-3-1電漿系統介紹及電漿參數 30 3-3-2電漿光譜之偵測診斷 32 3-3-3常溫電漿改質PET表面之親水特性測定 33 3-3-4離子交換材之製備 34 3-3-5離子交換材應用於重金屬離子吸附 38 3-3-6成果判定指標 40 第四章 結果與討論 41 4-1氧氣、氬氣電漿改質PET之最適條件探討 41 4-1-1反應時間對PET纖維表面親水性之影響 41 4-1-2電漿功率對PET纖維表面親水性之影響 43 4-1-3氣體壓力對PET纖維表面親水性之影響 49 4-1-4小結 53 4-2電漿改質PET接枝丙烯酸之條件探討 55 4-2-1接枝溫度對接枝效果之影響 55 4-2-2單體濃度對接枝效果之影響 59 4-2-3接枝時間對接枝效果之影響 62 4-2-4小結 63 4-3離子交換材吸附去除重金屬離子之探討 65 4-3-1鹼化程序對於重金屬離子吸附效果之影響 65 4-3-2酸鹼環境對於重金屬離子吸附效果之影響 72 4-3-3吸附行為探討及吸附成效評估 75 4-3-4小結 81 第五章 結論與建議 82 5-1結論 82 5-2建議 83 參考文獻 85

    Abdel-Aal, S. E., Gad, Y. H. and Dessouki, A. M. The use of wood pulp and radiation-modified starch in wastewater treatment. Journal of Applied Polymer Science 2006, 99, (5), 2460-2469.
    Aly, A. S., Jeon, B. D. and Park, Y. H. Preparation and evaluation of the chitin derivatives for wastewater treatments. Journal of Applied Polymer Science 1997, 65, (10), 1939-1946.
    Bailey, S. E., Olin, T. J., Bricka, R. M. and Adrian, D. D. Review of potentially low-cost sorbents for heavy metals. Water Research 1999, 33, (11), 2469-2479.
    Bhattacharya, S. D. and Inamdar, M. S. Polyacrylic acid grafting onto isotactic polypropylene fiber: Methods, characterization, and properties. Journal of Applied Polymer Science 2007, 103, (2), 1152-1165.
    Cavus, S., Gurdag, G., Yasar, M., Guclu, K. and Gurkaynak, M. A. The competitive heavy metal removal by hydroxyethyl cellulose-g- poly(acrylic acid) copolymer and its sodium salt: The effect of copper content on the adsorption capacity. Polymer Bulletin 2006, 57, (4), 445-456.
    Chansook, N. and Kiatkamjornwong, S., Ce(IV)-initiated graft polymerization of acrylic acid onto poly(ethylene terephthalate) fiber. Journal of Applied Polymer Science 2003, 89, (7), 1952-1958.
    Chen, J.-P. and Chiang, Y.-P. Surface modification of non-woven fabric by DC pulsed plasma treatment and graft polymerization with acrylic acid. Journal of Membrane Science 2006, 270, (1-2), 212-220.
    Coskun, R., Yigitoglu, M. and Sacak, M. Adsorption behavior of copper(II) ion from aqueous solution on methacrylic acid-grafted poly(ethylene terephthalate) fibers. Journal of Applied Polymer Science 2000, 75, (6), 766-772.
    Cvelbar, U., Krstulovic, N., Milosevic, S. and Mozetic, M. Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy. Vacuum 2007, 82, (2 SPEC ISS), 224-227.
    Dogue, I. L. J., Foerch, R. and Mermilliod, N. Plasma-induced hydrogel grafting of vinyl monomers on polypropylene. Journal of Adhesion Science and Technology 1995, 9, (12), 1531-1545.
    Dogue, I. L. J., Mermilliod, N. and Foerch, R. Grafting of acrylic acid onto polypropylene - comparison of two pretreatments: γ-irradiation and argon plasma. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 1995, 105, (1-4), 164.
    Gerente, C., Couespel du Mesnil, P., Andres, Y.; Thibault, J.-F. and Le Cloirec, P. Removal of metal ions from aqueous solution on low cost natural polysaccharides. Sorption mechanism approach. Reactive and Functional Polymers 2000, 46, (2), 135-144.
    Grill, A. Cold plasma in materials Fabrication. IEEE PRESS, 1983.
    Guo, Y., Zhang, J. and Shi, M. Surface graft copolymerization of acrylic acid onto corona-treated poly(ethylene terephthalate) fabric. Journal of Applied Polymer Science 1999, 73, (7), 1161-1164.
    Gupta, B., Hilborn, J. G., Bisson, I. and Frey, P. Plasma-Induced Graft Polymerization of Acrylic Acid onto Poly(ethylene terephthalate) Films. Journal of Applied Polymer Science 2001, 81, (12), 2993-3001.
    Gupta, B., Plummer, C., Bisson, I., Frey, P. and Hilborn, J. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: Characterization and human smooth muscle cell growth on grafted films. Biomaterials 2002, 23, (3), 863-871.
    Gupta, B., Saxena, S. and Ray, A. Plasma induced graft polymerization of acrylic acid onto polypropylene monofilament. Journal of Applied Polymer Science 2008, 107, (1), 324-330.
    Gupta, R. K. and Dubey, S. S. Removal of Cesium Ions from Aqueous Solution by Polyaniline: A Radiotracer Study. Journal of Polymer Research 2005, 12, (1), 31-35.
    Gurdag, G.. Guclu, G. and Ozgumus, S. Graft copolymerization of acrylic acid onto cellulose: Effects of pretreatments and crosslinking agent. Journal of Applied Polymer Science 2001, 80, (12), 2267-2272.
    Hochart, F., Levalois-Mitjaville, J., De Jaeger, R., Gengembre, L. and Grimblot, J. Plasma surface treatment of poly(acrylonitrile) films by fluorocarbon compounds. Applied Surface Science 1999, 142, (1-4), 574-578.
    Karakisla, M. The adsorption of Cu(II) ion from aqueous solution upon acrylic acid grafted poly(ethylene terephthalate) fibers. Journal of Applied Polymer Science 2003, 87, (8), 1216-1220.
    Katou, K., Asou, T., Kurauchi, Y. and Sameshima, R. Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode. Thin Solid Films 2001, 386, (2), 183-188.
    Kattan, M. and El-Nesr, E. Gamma-radiation-induced graft copolymerization of acrylic acid onto poly(ethylene terephthalate) films: A study by thermal analysis. Journal of Applied Polymer Science 2006, 102, (1), 198-203.
    Keles, S. and Guclu, G. Competitive removal of heavy metal ions by starch-graft-acrylic acid copolymers. Polymer - Plastics Technology and Engineering 2006, 45, (3), 365-371.
    Kondo, Y., Miyazaki, K., Takeuchi, N., Sakurai, K. and Kaneko, J. i. Hydrophilization of PET wire mesh in paper manufacture by electron beam irradiation induced graft polymerization. Sen'i Gakkaishi 2006, 62, (5), 95-99.
    Krstulovic, N., Labazan, I., Miloevic, S., Cvelbar, U., Vesel, A. and Mozeti, M. Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil. Journal of Physics D: Applied Physics 2006, 39, (17), 3799-3804.
    Lee, S.-D., Hsiue, G.-H. and Kao, C.-Y. Preparation and characterization of a homobifunctional silicone rubber membrane grafted with acrylic acid via plasma-induced graft copolymerization. Journal of Polymer Science, Part A: Polymer Chemistry 1996, 34, (1), 141-148.
    Lee, S.-D., Hsiue, G.-H. and Kao, C.-Y. Preparation and characterization of a homobifunctional silicone rubber membrane grafted with acrylic acid via plasma-induced graft copolymerization. Journal of Polymer Science, Part A: Polymer Chemistry 1996, 34, (1), 141-148.
    Li, Y.-N., Sun, Y., Deng, X.-H., Yang, Q., Bai, Z.-Y. and Xu, Z.-B. Graft polymerization of acrylic acid onto polyphenylene sulfide nonwoven initiated by low temperature plasma. Journal of Applied Polymer Science 2006, 102, (6), 5884-5889.
    Lu, W.-L., Huang, C.-Y. and Roan, M.-L. Effect of plasma treatment on the degree of AAm grafting for high-density polyethylene. Surface and Coatings Technology 2003, 172, (2-3), 251-261.
    Moustakas, K., Fatta, D. and Malamis, S. Haralambous, K.; Loizidou, M., Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. Journal of Hazardous Materials 2005, 123, (1-3), 120-126.
    Ramachandran, K. and Kikukawa, N. Thermal plasma in-flight treatment of electroplating sludge. IEEE Transactions on Plasma Science 2002, 30, (1 III), 310-317.
    Ruelle, B., Peeterbroeck, S., Gouttebaron, R., Godfroid, T., Monteverde, F., Dauchot, J.-P., Alexandre, M, Hecq, M. and Dubois, P. Functionalization of carbon nanotubes by atomic nitrogen formed in a microwave plasma Ar + N2 and subsequent poly(ε-caprolactone) grafting. Journal of Materials Chemistry 2007, 17, (2), 157-159.
    Shin, Y., Son, K. and Yoo, D. I. Functional finishing by using atmospheric pressure plasma: Grafting of PET nonwoven fabric. Journal of Applied Polymer Science 2007, 103, (6), 3655-3659.
    Svorcik, V., Kolarova, K., Slepicka, P., Mackova, A., Novotna, M. and Hnatowicz, V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polymer Degradation and Stability 2006, 91, (6), 1219-1225.
    Teng, R. and Yasuda, H. K. Ex Situ Chemical Determination of Free Radicals and Peroxides on Plasma Treated Surfaces. Plasmas and Polymers 2002, 7, (1), 57-69.
    Tsafack, M. J. and Levalois-Grutzmacher, J. Plasma induced graft polymerization of flame retardant monomers onto PAN fabrics. Surface and Coatings Technology 2006, 200, (11), 3503-3510.
    Tsafack, M. J. and Levalois-Grutzmacher, J. Towards multifunctional surfaces using the plasma-induced graft-polymerization (PIGP) process: Flame and waterproof cotton textiles. Surface and Coatings Technology 2007, 201, (12), 5789-5795.
    Tseng, C.-H., Wang, C.-C. and Chen, C.-Y. Polypropylene fibers modified by plasma treatment for preparation of Ag nanoparticles. Journal of Physical Chemistry B 2006, 110, (9), 4020-4029.
    Tyan, Y.-C., Liao, J.-D. and Lin, S.-P. Surface properties and in vitro analyses of immobilized chitosan onto polypropylene non-woven fabric surface using antenna-coupling microwave plasma. Journal of Materials Science: Materials in Medicine 2003, 14, (9), 775-781.
    Uchida, E., Iwata, H. and Ikada, Y. Surface structure of poly(ethylene terephthalate) film grafted with poly(methacrylic acid). Polymer 2000, 41, (10), 3609-3614.
    Vitta, S. B., Stahel, E. P. and Stannett, V. T. Preparation and properties of acrylic and methacrylic acid grafted cellulose prepared by ceric ion initiation. II. water retention properties. Journal of Applied Polymer Science 1986, 32, (7), 5799-5810.
    Xu, H., Hu, Z., Wu, S. and Chen, Y. Surface modification of polytetrafluoroethylene by microwave plasma treatment of H2O/Ar mixture at low pressure. Materials Chemistry and Physics 2003, 80, (1), 278-282.
    Xu, Z., Wang, J., Shen, L., Men, D. and Xu, Y. Microporous polypropylene hollow fiber membrane. Part I. Surface modification by the graft polymerization of acrylic acid. Journal of Membrane Science 2002, 196, (2), 221-229.
    Zumdahl, S. S. Chemistry. D.C.Heath and company, 1986.
    行政院經濟部工業局網頁,http://www.moeaidb.gov.tw/portal.html, 2008。
    林建中,高分子化學原理 第九版,歐亞書局,1985。
    林建中,高分子材料性質與應用,高立圖書有限公司,1998。
    高正雄,超LSI時代:電漿化學,復漢出版社,1984。
    張益國,黃酸鹽程序去除銅離子及其生成物之穩定性,國立成功大學環境工程學系博士論文,台灣台南,2003。
    陳滄欽,澱粉黃酸鹽程序捕集及熱處理回收重金屬之研究,國立成功大學環境工程學系碩士論文台灣台南,2004。
    楊萬發,水及廢水處理化學,茂昌圖書有限公司,1999。
    蘇心敏,常溫電漿改質聚丙烯纖維接枝硫脲去除銅離子之可行性,國立成功大學環境工程學系碩士論文,台灣台南,2006。
    鐘裕達,羧基型離子交換材製備及回收銅之研究,國立成功大學環境工程學系碩士論文,台灣台南,2007。

    下載圖示 校內:2009-08-14公開
    校外:2011-08-14公開
    QR CODE