簡易檢索 / 詳目顯示

研究生: 何筠怡
Ho, Yun-I
論文名稱: Ni/ZrO2陽極材料之電子傳輸特性: 第一原理計算
Electronic transport properties in the Ni/ZrO2 composite anode: First-principles calculations
指導教授: 蘇彥勳
Su, Yen-Hsun
共同指導教授: 關肇正
Kaun, Chao-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 59
中文關鍵詞: 固態氧化物燃料電池第一原理計算異質介面結構
外文關鍵詞: solid oxide fuel cell, first-principle calculations, heterostructure
相關次數: 點閱:113下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著溫室效應等問題存在多年,近期許多國家轉而積極推廣再生能源。固態氧化物燃料電池(SOFC)可視為具有發現潛力的新興能源之一。不僅因其擁有比其他同類型的燃料電池較高的能量密度,也包括高轉換效率及零污染等優點。雖然Ni/ZrO2是常見的固態氧化物燃料電池陽極材料,但在實驗上針對晶格取向影響的討論卻相對較少,因此在本研究中將以此作為討論主軸。
    在本研究中利用第一原理計算Ni/ZrO2異質界面結構,探討在不同的旋轉介面角度下電子結構及特性的變化,藉由計算態密度及電子傳導係數等相關特性比較各種異質界面結構間的優劣性。根據優化後的結構中會發現介面都出現Ni原子及O原子間的鍵長比初始結構的鍵長短,且介面間距也有縮小的現象,代表在介面的原子可能存在交互作用,且由態密度的結果判斷,電荷是在Ni的d軌域、O的p軌域與Zr的d軌域之間進行傳輸。比較在不同旋轉角度下結構之傳輸係數及局部態密度分析圖結果發現,旋轉角度為30o的結構在費米能處擁有較高的傳輸係數。此外,在介面處的LDOS顯示,其中部分的Ni原子及Zr原子是相連結的,代表介面之間有偶合,且可能是由Ni-Zr的軌域混成所造成。若是延伸到應用上,我們以常見的氫氣及甲烷燃料作為參考,其開路電壓分別為1.05 V及1.15 V,對應到穿隧能譜中的能量位置,都會以旋轉角度90o的結構會具有較高的傳輸係數。若繪製此能量下的LDOS圖,可以看到當旋轉角度為90o之電荷密度等效平面都較其他結構大,且在介面處的原子態密度也有相偶合的狀況,推測可能是Ni-Zr之間發生軌域混成,提升結構的電荷傳輸特性,因此90o的結構在應用到SOFC的陽極材料上會具有較佳的電荷傳輸特性。綜觀以上結果說明介面的方向對於系統的導電性的確有影響。

    With the greenhouse effect existing for many years, many countries have tried to promote renewable energies. Solid oxide fuel cells (SOFC) can be regarded as one of the talented energy. Not only does it have a higher energy density than other types of fuel cells, but also it has advantages of high conversion efficiency and non-pollution. Although Ni/ZrO2 is a classical anode material of SOFC, there has been little discussion on the effect of structure orientations.
    In this study, we investigate the geometric and electronic properties of Ni/ZrO2 heterostructures from first-principle calculations, focusing on the effect of different orientation angles at the interface. We compare density of states and the transmission spectra of six heterostructures. After optimization, the Ni-O bond and the interfacial spacing decrease, indicating that there might be an interaction at the interface. Also, in density of states, the charge transferred between Ni d orbitals, O p orbitals and Zr d orbitals can be observed. Comparing the transmission coefficients and the local density of states (LDOS) of the heterostructures at the Fermi energy with different orientations, the structure of 30o shows a higher transmission coefficient, and there is LDOS overlaps between Ni and Zr atoms, attributed to the hybridization of Ni-Zr. If we consider application, hydrogen and methane are the common fuels in the usage of SOFC. The open circuit voltages (OCV) are 1.05 V and 1.15 V, respectively. Corresponding to the transmission spectrum and LDOS, the 90o structure shows a higher transmission coefficient. Also there is a hybridization between the interface, which provides the structure a good transport characteristic. In summary, 90o structure shows a better transmission peroperty in application. Overall, the orientation of the interface indeed has effects on the electronic transport properties of the Ni/ZrO2 systems.

    摘要 I Abstract II 致謝 VII 表目錄 X 圖目錄 XI 第 1 章 緒論 1 1.1 前言 1 1.2 固態氧化物燃料電池(solid oxide fuel cell, SOFC) 3 1.3 研究動機 5 第 2 章 基礎理論與文獻回顧 6 2.1 第一原理計算 6 2.2 薛丁格方程式(Schrödinger equation) 6 2.2.1 波動方程式 7 2.2.2 波函數的物理意義 9 2.3 多電子系統與Hartree-Fock近似 10 2.4 密度泛函理論(Density Functional Theory, DFT) 11 2.4.1 Hohenberg-Kohn定理 12 2.4.2 Kohn-Sham方程(Kohn-Sham equations) 14 2.4.3 局部密度近似法(Local Density Approximation, LDA) 17 2.4.4 廣義梯度近似法(Generalized Gradient Approximation, GGA) 17 2.5 贋勢法(Pseudopotential method) 18 2.6 非平衡格林函數理論(Non-Equilibrium Green’s Functions, NEGF) 20 2.7 自洽場方法(self-consistent field method, SCF) 27 2.8 異質界面材料相關文獻 29 2.8.1鎳-二氧化鋯(Ni/ZrO2) 29 2.8.2鎳-二氧化鋯(Ni/ZrO2)的特性判斷 30 第 3 章 計算軟體介紹 32 3.1 Siesta 32 3-2 Nanodcal 32 3.3 計算參數 33 3.3.1 Siesta–結構優化(structure optimization) 33 3.3.2 Nanodcal–電子能帶結構、態密度、態密度投影實空間以及電性傳輸計算 34 第 4 章 結果與分析討論 35 4.1 單體材料結構優化及電子性質分析 35 4.1.1 鎳金屬(Nickel, Ni) 35 4.1.2 二氧化鋯(Zirconia, ZrO2) 37 4.2 異質接面之結構優化及電子特性 39 4.2.1 鎳-二氧化鋯(Ni/ZrO2)異質接面的結構優化 39 4.2.2 旋轉角度對結構的影響 46 4.2.3 自旋的探討 50 第 5 章 結論 52 5.1 結構優化的影響 52 5.2 異質界面結構電性結果 52 5.3 異質界面結構電性比較 52 參考文獻 54

    [1] 台灣電力公司.
    (https://www.taipower.com.tw/tc/index.aspx)
    [2] 黃鎮江, 燃料電池. 全華科技圖書, 2005.
    [3] Antig, Fuel Cell Innovation.
    (http://www.antig.com/technology/technology_fuel_cell_types.htm)
    [4] University of Cambridge/DoITPoMS/TLP Library.
    (https://www.doitpoms.ac.uk/tlplib/)
    [5] 徐崇欽, "合金添加及製程對鉍鐵氧化物固態電解質電性影響之研究," 碩士, 材料科學與工程學系, 義守大學, 2007.
    [6] N. L. Robertson and J. N. Michaels, "Oxygen Exchange on Platinum Electrodes in Zirconia Cells: Location of Electrochemical Reaction Sites," J. Electrochem. Soc., vol. 137, pp. 129-135, 1990.
    [7] C. A. Cortés-Escobedo, J. Muñoz-Saldaña, A. M. Bolarín-Miró, and F. Sánchez-de Jesús, "Determination of strontium and lanthanum zirconates in YPSZ–LSM mixtures for SOFC," Journal of Power Sources, vol. 180, pp. 209-214, 2008.
    [8] N. Ben-Oved and O. Kesler, "A New Technique for the Rapid Manufacturing of Direct-Oxidation Anodes for SOFC's," Advanced Materials Research, vol. 15-17, pp. 287-292, 2007.
    [9] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Physical Review, vol. 136, pp. B864-B871, 1964.
    [10] W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Physical Review, vol. 140, pp. A1133-A1138, 1965.
    [11] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
    [12] E. Schrödinger, "An Undulatory Theory of the Mechanics of Atoms and Molecules," Physical Review, vol. 28, pp. 1049-1070, 1926.
    [13] M. Born, "Zur Quantenmechanik der Stoßvorgänge," Zeitschrift für Physik, vol. 37, pp. 863-867, 1926.
    [14] J. C. Slater, "A Simplification of the Hartree-Fock Method," Physical Review, vol. 81, pp. 385-390, 1951.
    [15] N. B. D. phil., "I. On the constitution of atoms and molecules," Philosophical Magazine Series 6, vol. 26, pp. 1-25, 1913.
    [16] E. Rutherford, "The Scattering of α and β Particles by Matter and the Structure of the Atom," Philos. Mag. 6, vol. 21, pp. 669-688, 1911.
    [17] 潘昱妘, "有機無機混合鈣鈦礦型材料APbX3 (A= MA, FA;X = Cl, Br, I)電子結構之第一原理計算研究," 碩士, 材料科學及工程學系, 國立成功大學, 2016.
    [18] L. H. Thomas, "The calculation of atomic fields," Proc. Cambridge Phil. Soc., vol. 23, pp. 542-548, 1927.
    [19] E. Fermi, "Un metodo statistico per la determinazione di alcune priorietà dell'atome," Rend. Accad. Naz. Lincei, vol. 6, pp. 602-607, 1927.
    [20] D. M. Ceperley and B. J. Alder, "Ground State of the Electron Gas by a Stochastic Method," Physical Review Letters, vol. 45, pp. 566-569, 1980.
    [21] J. P. Perdew et al., "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Physical Review B, vol. 46, pp. 6671-6687, 1992.
    [22] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical Review A, vol. 38, pp. 3098-3100, 1988.
    [23] D. C. Langreth and M. J. Mehl, "Beyond the local-density approximation in calculations of ground-state electronic properties," Physical Review B, vol. 28, pp. 1809-1834, 1983.
    [24] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, "Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients," Reviews of Modern Physics, vol. 64, pp. 1045-1097, 1992.
    [25] J. Taylor, H. Guo, and J. Wang, "Ab initio modeling of quantum transport properties of molecular electronic devices," Physical Review B, vol. 63, p. 245407, 2001.
    [26] Y. V. Nazarov and Y. M. Blanter, Quantum Transport: Introduction to Nanoscience, 1st ed. Cambridge University Press, Cambridge, p.590, 2009.
    [27] L. V. Keldysh, "Diagram technique for nonequilibrium processes," SOVIET PHYSICS JETP, vol. 20, pp. 1018-1026, 1965.
    [28] Nanodcal Theory by Nano Academic Technologies Inc.
    (http://www.nanoacademic.ca/
    [29] 黃莉雯, "以第一原理計算胜肽分子之導電性質變化," 碩士, 材料科學及工程學系, 國立成功大學, 2015.
    [30] I. N. Levine, Quantum Chemistry, 7th ed. Pearson Education, Inc., United States of America, p. 720, 2013.
    [31] R. Grau-Crespo, N. C. Hernandez, J. F. Sanz, and N. H. de Leeuw, "Theoretical investigation of the deposition of Cu, Ag, and Au atoms on the ZrO2(111) surface," J. Phys. Chem. C, Article vol. 111, pp. 10448-10454, 2007.
    [32] C. R. A. Catlow, S. A. French, A. A. Sokol, M. Alfredsson, and S. T. Bromley, "Understanding the interface between oxides and metals," Faraday Discussions, Article vol. 124, pp. 185-203, 2003.
    [33] W. Wang, Z. Z. Liang, X. L. Han, J. F. Chen, C. Y. Xue, and H. Zhao, "Mechanical and thermodynamic properties of ZrO2 under high-pressure phase transition: A first-principles study," Journal of Alloys and Compounds, Article vol. 622, pp. 504-512, 2015.
    [34] M. Miyayama, K. Hikita, G. Uozumi, and H. Yanagida, "A.C. impedance analysis of gas-sensing property in CuO/ZnO heterocontacts," Sensors and Actuators B-Chemical, Article; Proceedings Paper vol. 25, pp. 383-387, 1995.
    [35] A. Y. Stakheev and L. M. Kustov, "Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s," Applied Catalysis a-General, Review vol. 188, pp. 3-35, 1999.
    [36] J. B. Goodenough and Y. H. Huang, "Alternative anode materials for solid oxide fuel cells," Journal of Power Sources, Review vol. 173, pp. 1-10, 2007.
    [37] V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides. Cambridge University Press, Cambridge, p. 464, 1994.
    [38] S. D. Kim, H. Moon, S. H. Hyun, J. Moon, J. Kim, and H. W. Lee, "Ni-YSZ cermet anode fabricated from NiO-YSZ composite powder for high-performance and durability of solid oxide fuel cells," Solid State Ionics, Article vol. 178, pp. 1304-1309, 2007.
    [39] N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc, Review vol. 76, pp. 563-588, 1993.
    [40] N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells. Elsevier, Amsterdam, p. 366, 1995.
    [41] S. C. Singhal and K. Kendall, High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier Science, Oxford, UK, p.406, 2003.
    [42] Z. Li, C. V. Ciobanu, J. Hu, J. P. Palomares-Baez, J. L. Rodriguez-Lopez, and R. Richards, "Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity," Phys Chem Chem Phys, vol. 13, pp. 2582-2589, 2011.
    [43] P. Luches, F. Pagliuca, S. Valeri, F. Illas, G. Preda, and G. Pacchioni, "Nature of Ag Islands and Nanoparticles on the CeO2(111) Surface," The Journal of Physical Chemistry C, vol. 116, pp. 1122-1132, 2011.
    [44] A. Cadi-Essadek, A. Roldan, and N. H. de Leeuw, "Density Functional Theory Study of Ni Clusters Supported on the ZrO2(111) Surface," Fuel Cells, vol. 17, pp. 125-131, 2017.
    [45] M. A. Buccheri, A. Singh, and J. M. Hill, "Anode- versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane," Journal of Power Sources, vol. 196, pp. 968-976, 2011.
    [46] L. Peng and J. T. S. Irvine, "Fabrication of anode-supported zirconia thin film electrolyte based core–shell particle structure for intermediate temperature solid oxide fuel cells," Progress in Natural Science: Materials International, vol. 23, pp. 302-307, 2013.
    [47] J. Yang, A. F. Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, "A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells," ACS Appl Mater Interfaces, vol. 7, pp. 28701-28707, 2015.
    [48] J. e. M. Soler et al., "The SIESTA method for ab initio order-N materials simulation," J. Phys.: Condens. Matter, vol. 14, pp. 2745-2779, 2002.
    [49] Physyn TECH.
    (https://physon.hk/product/nanodcal/)
    [50] W. Setyawan and S. Curtarolo, "High-throughput electronic band structure calculations: Challenges and tools," Computational Materials Science, vol. 49, pp. 299-312, 2010.
    [51] L. Soriano, M. Abbate, J. Faber, C. Morant, and J. M. Sanz, "The electronic structure of ZrO2 Band structure calculations compared to electron and x-ray spectra," Solid State Communications, vol. 93, pp. 659-665, 1995.
    [52] E. C. Dickey, V. P. Dravid, P. D. Nellist, D. J. Wallis, S. J. Pennycook, and A. Revcolevschi, "Structure and Bonding at Ni–ZrO2 (Cubic) Interfaces Formed by the Reduction of a NiO–ZrO2 (Cubic) Composite," Microsc. Microanal., vol. 3, pp. 443-450, 1997.
    [53] X. Luo, G. Wang, Y. Huang, B. Wang, H. Yuan, and H. Chen, "A two-dimensional layered CdS/C2N heterostructure for visible-light-driven photocatalysis," Phys Chem Chem Phys, vol. 19, pp. 28216-28224, 2017.
    [54] J. I. Beltrán, S. Gallego, J. Cerdá, J. S. Moya, and M. C. Muñoz, "Bond formation at the Ni/ZrO2 interface," Physical Review B, vol. 68, pp. 075401, 2003.

    下載圖示 校內:2023-08-20公開
    校外:2023-08-20公開
    QR CODE