| 研究生: |
余曜宇 Yu, Yao-Yu |
|---|---|
| 論文名稱: |
應用實驗設計進行半導體晶圓去膜製程最佳參數之研究 The determination of optimal parameter settings for semiconductor wafer BG tape removal process using experimental design |
| 指導教授: |
黃宇翔
Huang, Yeu-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 去膜製程 、因子實驗設計 、反應曲面法 、參數最佳化 |
| 外文關鍵詞: | Tape Peeling Process, Factorial Experiment Design, Response Surface Method, Parameter Optimization |
| 相關次數: | 點閱:108 下載:39 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了滿足近年來虛擬實境 (Virtual Reality ; VR) 、虛擬貨幣挖礦 (Mining)、自動駕駛汽車、人工智慧 (Artificial Intelligence ; AI)、5G通訊(5th Generation Mobile Networks)等需求大量高速資料運算晶片(Chip)的相關市場,在不增加產品體積又必須達成高速運算的前提之下,客戶端需求在固定的積體電路 (Integrated Circuit ; IC)空間內堆疊更多的晶片以達成高密度封裝。因此客戶所需求的晶圓(Wafer)研磨厚度也愈來愈薄,研磨後的超薄晶圓非常的脆弱,對後續封裝製程高良率的維持形成一大挑戰。
本研究主要探討晶圓研磨薄化中的去膜製程 (De-taping)。去膜製程的主要任務是將晶圓晶背研磨前,於上膜 (Taping) 製程中在晶面貼上的晶背研磨保護膠膜 (Back Grinding Tape ; BG Tape) 撕除。由於晶圓研磨薄化後的厚度低於保護膠膜的厚度,且因不同產品的晶面電路佈線設計不同,導致上膜後膠膜附著於晶面的黏著度不同。上述問題造成去膜機的去膜手臂 (Peeling Arm) 時常於去膜初期將晶圓前端拉起或將晶圓拖曳位移,進而導致去膜平台真空吸附值低於警戒設定值觸發機台機故,嚴重狀況甚至造成晶圓受損報廢。在設備機台方面,影響去膜成功與否的參數因子水準眾多。因此本研究利用特性要因圖,找出機台中可能導致去膜失敗的因子,接著利用DOE (Design of Experiement ),執行部分因子實驗設計,記錄應變數之數值,並執行二階段反應曲面設計實驗,找出去膜最適參數組合以減少去膜失敗次數,以改善去膜製程良率。實驗結果發現機故率由原本平均40%大幅下降至15%,過往該產品平均作業20片會有8片晶圓於去膜時被手臂拉起。透過最佳參數組合,執行20次驗證實驗,發現僅有3片在做作業時被拉起,作業平台前端真空平均值也由77.6千帕提升至80.32千帕,最佳化參數實驗結果相較於原作業狀況改善許多。
This research investigates the tape peeling process in wafer grinding and thinning. The task of the tape peeling process is to remove the wafer back grinding protective tape attached to the wafer surface during the tape process before the wafer back grinding. Since the thickness of the thinned wafer after grinding is lower than the thickness of the back grinding protective tape, and the circuit wiring design of the wafer of different products is different, the adhesion of the adhesive tape to the wafer after the tape is applied is different. The above-mentioned problems cause the peeling arm of the tape remover to frequently pull up the front of the wafer or drag the wafer to displace during the initial stage of tape removal, which causes the vacuum suction value of the peeling table to be lower than the warning setting value and triggers the machine failure. The serious condition even caused the wafer to be damaged and scrapped. In terms of equipment and machines, numerous parameter factors that affect the success of the tape removal. Therefore, this study adopts the fishbone diagram to find out the factors that may cause the de-taping failure in the machine, perform part of the factorial experiment design with DOE, record the value of the strain number, and perform a two-stage reaction surface design experiment to find the most adequate parameters for the tape remover to reduce the number of failures, and improve the yield of the tape peeling process.
The experimental results found that the probability of failure has significantly dropped to 15% from the original average of 40%. In the past, 8 wafers were pulled up by the arm during the removal of the tape on the average of 20 wafers of this product. Through the optimal combination of the parameters, 20 verification experiments were performed, and found that only 3 pieces were pulled up during the operation. The average vacuum at the front end of the peeling table also increased from 77.6 kPa to 80.32 kPa. The experimental results of the optimal parameters are much dramatically improved compared to the original operating conditions.
中文部分
林李旺 (2013)。實驗設計與田口方法。新北市: 全華。
呂政冀 (2009). 應用部分因子實驗設計進行 LED 磊晶之 MOCVD 製程最佳參數之研究. 成功大學工業與資訊管理學系碩士在職專班學位論文, 1-47.
林詩涵 (2014). 以反應曲面法探討糖質克弗爾多醣/小麥澱粉混合膜之物理及機械特性. 中興大學食品暨應用生物科技學系所學位論文, 1-132.
許晉豪 (2016)。以實驗法逆向求解押出成形參數。國立虎尾科技大學機械與電 腦輔助工程系碩士班學位論文,雲林縣。
陳寵文 (2007)。以田口方法探討光電廠去光阻劑回收系統運轉之最佳化。國立 交通大學工程院專班永續環境科技學程碩士論文,新竹市。
戴搖廷 (2014). 應用田口方法至 TFT-LCD 黑色矩陣檢測缺陷之參數設計.國立中興大學,臺中市。
林雲德 (2008). Application of Taguchi Methods to Improve the Performance. In 應 用田口方法改善接觸式三次元測量儀量測品質.
楊家豪 (2005). 部分因子設計法評估兩段式電透析處理含鉻電鍍廢水之研 究. 臺北科技大學環境規劃與管理研究所學位論文, 1-80.
翁文哲 (2019). 應用實驗設計法改善 MEMS 壓力感測器出貨包材之回收率-以B微機電晶圓廠為例. 交通大學管理學院工業工程與管理學程學位論 文, 1-34.
英文部分
Al-Dawalibi, A., Al-Dali, I. H., & Alkhayyal, B. A. (2020). Best marketing strategy selection using fractional factorial design with analytic hierarchy process. MethodsX, 7, 100927.
Biglete, E. R., Manuel, M. C. E., Cruz, J. C. D., Verdadero, M. S., Diesta, J. M. B., Miralpez, D. N. G., ... & Picato, J. I. C. (2020, August). Surface Roughness Analysis of 3D Printed Parts Using Response Surface Modeling. In 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC) (pp. 191-196). IEEE.
Czitrom, V. (1999). One-factor-at-a-time versus designed experiments. The American Statistician, 53(2), 126-131.
Davis, R., & John, P. (2018). Application of Taguchi-based design of experiments for industrial chemical processes. Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes, 137, 137-155..
Delgarm, N., Sajadi, B., Azarbad, K., & Delgarm, S. (2018). Sensitivity analysis of building energy performance: A simulation-based approach using OFAT and variance-based sensitivity analysis methods. Journal of Building Engineering, 15,
181-193.
Grömping, U. (2018). R package DoE. base for factorial experiments. Journal of Statistical Software, 85(1), 1-41.
Kechagias, J. D., Aslani, K. E., Fountas, N. A., Vaxevanidis, N. M., & Manolakos, D. E. (2020). A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy. Measurement, 151, 107213.
Khuri, A. I., & Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 128-149.
Li, X. X., Sun, Y. F., & Zhao, G. Y. (2019, August). Thermal Fatigue Life of Copper Filled Laminated Micropore Based on Response Surface Methodology. In 2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE) (pp. 1-7). IEEE.
Manoppong, A., & Thongrattana, P. T. (2020, April). Design of Experiment for Determining Optimum Parameter to Reduce Defects in Surface Mount Technology Process on the Flexible Printed Circuit. In 2020 IEEE 7th International Conference on Industrial Engineering and Applications(ICIEA) (pp.192-196).IEEE.
Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons. Perera, H. A. D., & Gamage, P. (2017, December). An application of fractional factorial method to obtain robust solutions at a glove manufacturing environment in sri lanka. In 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1704-1708). IEEE.
Sharma, U., & Singh, B. (2021). Design and Development of Energy Efficient Single Phase Induction Motor For Ceiling Fan Using Taguchi's Orthogonal Arrays. IEEE Transactions on Industry Applications.
Saha, S. P., & Ghosh, S. (2014). Optimization of xylanase production by Penicillium citrinum xym2 and application in saccharification of agro-residues. Biocatalysis and Agricultural Biotechnology, 3(4), 188-196.
Semon, A., Melcescu, L., Craiu, O., & Crăciunescu, A. (2019, March). Design Optimization of the Rotor of a V-type Interior Permanent Magnet Synchronous Motor using Response Surface Methodology. In 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE) (pp. 1-4).IEEE.
Singh, B., Shastri, S., & Sharma, U. (2020, October). Robust Design of a Ceiling Fan Halbach Array PMBLDC Motor using Taguchi Orthogonal Array. In 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON) (pp. 430-435). IEEE.
Tang, Z., Xia, W., Li, F., Zhou, Z., & Zhao, J. (2010, June). Application of response surface methodology in the optimization of burnishing parameters for surface integrity. In 2010 International Conference on Mechanic Automation and Control Engineering (pp. 3887-3890). IEEE.
Wijerathna, W. H. A. C., Jayantha, I. D. M. H., & Gamage, P. (2016, October). Improve surface roughness in turning operation based on the factorial design methodology. In 2016 Manufacturing & Industrial Engineering Symposium (MIES) (pp.1-6). IEEE.
Yang, T., Wen, Y. F., Hsieh, Z. R., & Zhang, J. (2020). A lean production system design for semiconductor wafer-ingot pulling manufacturing using hybrid Taguchi method and simulation optimization. Assembly Automation.
Yang, Y., Sun, T., Ren, X., & Pang, J. (2018, August). Application of Non-UV BG Tape on Assembly of Flip-Chip Package with Copper Pillar Bump. In 2018 19th International Conference on Electronic Packaging Technology (ICEPT) (pp.599 602). IEEE.
You, S. H., Lee, J. H., & Oh, S. H. (2019). A study on cutting characteristics in turning operations of titanium alloy used in automobile. International Journal of Precision Engineering and Manufacturing, 20(2), 209-216.
網站部分
鈦昇科技.(2020). Retrieved from https://www.enr.com.tw/wafer-laser-marking.htm
Dicing before Grinding (DBG) DISCO HI-TEC EUROPE Service Solution. (2017, November 24). Retrieved from https://www.youtube.com/watch?v=uOYtjOfBLso
JP4502547B2 - Method and apparatus for removing protective tape of semiconductor wafer. (2010). Retrieved from https://patents.google.com/patent/JP4502547B2/en?oq=JP4502547B2
TWM589639U-Tape-removing machine for wafers. (2020). Retrieved from https://patents.google.com/patent/TWM589639U/en?oq=TWM589639U
US7686916B2 - Sheet peeling apparatus and peeling method. (2005). Retrieved from https://patents.google.com/patent/US7686916B2/en?oq=US7686916B2
ViTrox Corporation Berhad.(2020). Retrieved from https://www.vitrox.com/vision- technology-machine-system/wafer-vision-inspection-handler-wi8i-features.php
Wafer Service Overview. (2020). Retrieved from https://www.syagrussystems.com/service overview