| 研究生: |
刁俊祺 Diao, Jyun-Ci |
|---|---|
| 論文名稱: |
光學拓樸優化密度模型對消色差氮化鎵超穎透鏡反向設計模擬研究 Simulation Studies for Inverse Design of achromatic GaN Metalenses by Optical Topology Optimization Density Model |
| 指導教授: |
藍永強
Lan, Yung-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 寬頻低色差超穎透鏡 、氮化鎵透鏡 、拓樸優化密度模型 、反向設計 |
| 外文關鍵詞: | Achromatic broadband metalens, GaN metalens, Optical topology optimization density Model, Inverse design |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超穎透鏡,以其輕量化和小型化的特點,將在未來的光學模組產品中展現出更強大的潛力。與傳統透鏡相比,超穎透鏡的體積與重量得到了顯著的縮小,使得其在應用於各種精密與高科技設備時,顯得更具彈性與便利。超穎結構在設計上,一般是利用對希望的操作頻率上做計算,設計出能夠達成相位匹配的結構,如 PB 相位法,然而,如面對多頻或寬頻的入射光的情況下,超穎透鏡的相位匹配設計可能因為頻率過大的變化導致聚焦錯誤,進而產生像差。
為了解決此問題,我們嘗試採用拓樸優化密度模型來最佳化氮化鎵(GaN)多頻超穎透鏡的結構。此方法的目的在於優化出能在面對多頻入射光時,達到最小像差和最大效率的結構,以此提升透鏡品質。
拓樸優化密度模型在反向設計上,以其極佳的優化效能與優化效率著名,然而,也有個無法避免的缺點,那即是最終優化結構有可能超出現有的實作技術。為了在優化效能與實作難易度上做出平衡,也為了驗證拓樸優化密度模型的設計潛力,我們設計了三個實驗,從原始設計目標的中心聚焦超穎透鏡,到想更進一步探索的偏離軸心聚焦的超穎透鏡與具有挑戰力的紅綠藍三色分開聚焦的超穎透鏡。三種設計的目標是為了達到對不同頻率的入射光進行精確偏折,進而增強超穎透鏡在處理多頻入射光情況下的性能。
Metalenses, with their lightweight and miniature characteristics, will demonstrate more powerful potential in future optical module products. Compared to traditional lenses, metalenses have significantly reduced volume and weight, making them more flexible and convenient when applied to various precision and high-tech devices. The design of a metasurface structure generally involves calculations at the desired operating frequency,
and designing structures that can achieve phase matching, such as the Pancharatnam–Berry (PB) phase method. However, when facing multi-frequency or broadband incident light, the phase matching design of the metalens may be incorrect due to too large frequency variations, resulting in aberrations.
To solve this problem, we attempt to use the topology optimization density model to optimize the structure of gallium nitride (GaN) multi-frequency metalenses. The goal of this method is to optimize a structure that can achieve minimal aberration and maximum efficiency when facing multi-frequency incident light, thereby improving lens quality.
The topology optimization density model is renowned for its excellent optimization performance and efficiency in inverse design. However, it also has an inevitable drawback, which is that the final optimized structure may exceed existing implementation techniques.
To strike a balance between optimization performance and implementation difficulty, and to verify the design potential of the topology optimization density model, we designed three experiments. Starting from the center-focus metalens that we initially wanted to improve, to the off-axis focused metalens we wanted to further explore, and the challenging red, green, and blue separate-focus metalens. The goal of the three designs is to achieve precise deflection for incident light of different frequencies, thereby enhancing the performance of metalenses when dealing with multi-frequency incident light.
[1]. William A. Newcomb; Generalized Fermat principle. American Journal of Physics, 1983.
[2] Hecht, Eugene, Optics 4th, United States of America: Addison Wesley: pp. 106-111, 127-129, 141, 2002.
[3] Smith, D. R.; Padilla, WJ; Vier, DC; Nemat-Nasser, SC; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters. 2000.
[4] R. A. Shelby et al., Experimental Verification of a Negative Index of Refraction. Science 292, 77-79, 2001.
[5] Wang, S., Wu, P.C., Su, VC. et al. A broadband achromatic metalens in the visible. Nature Nanotech 13, 227-232, 2018.
[6] Duysinx, P. and Bendsøe, M.P., Topology optimization of continuum structures with local stress constraints. Int. J. Numer. Meth. Engng., 43: 1453-1478, 1998.
[7] Jameson, Antony. Gradient based optimization methods. MAE Technical Report No 2057, 1995.
[8] Wang, Jiahui, et al. Adjoint-based optimization of active nanophotonic devices. Optics express, 26.3: 3236-3248, 2018.
[9] Slawinski, Michael A., et al. A generalized form of Snell's law in anisotropic media. Geophysics, 65.2: 632-637, 2000.
[10] Stéphane Larouche and David R. Smith, Reconciliation of generalized refraction with diffraction theory, Opt. Lett. 37, 2391-2393, 2012.
[11] Depasse, F., et al. Huygens–Fresnel principle in the near field. Optics letters, 20.3: 234-236, 1995.
[12] Aieta, F. et al. Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21, 31530-31539, 2013.
[13] Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Optical Mater. 3, 813-820, 2015.
[14] Fan, Z. B. et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl. 10, 2018.
[15] Zhao, Qian, et al. Mie resonance-based dielectric metamaterials. Materials today, 12.12: 60-69, 2009.
[16] Smith, P. W.; Turner, E. H. A bistable Fabry‐Perot resonator. Applied Physics Letters, 30.6: 280-281, 1977.
[17] Olmos-Trigo, Jorge, et al. Kerker conditions upon lossless, absorption, and optical gain regimes. Physical Review Letters, 125.7: 073205, 2020.
[18] Garmire, E. Simple solutions for modeling symmetric step-index dielectric waveguides. Journal of lightwave technology, 6.6: 1105-1108, 1988.
[19] Chen, B. H. et al. Gan metalens for pixel-level full-color routing at visible light. Nano Lett. 17, 6345-6352, 2017.
[20] Gutierrez-Vega, Julio C. Pancharatnam–Berry phase of optical systems. Optics letters, 36.7: 1143-1145, 2011.
[21] Gerdan, George P.; Deakin, Rodney E. Transforming cartesian coordinates X, Y, Z to geographical coordinates ϕ, λ, h. Australian surveyor, 44.1: 55-63, 1999.
[22] Monk, Peter. Finite element methods for Maxwell's equations. Oxford University Press, 2003.
[23] Ihlenburg, Frank; Babuska, Ivo. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM. Computers & Mathematics with Applications, 30.9: 9-37, 1995.
[24] Christainsen, Rasmus E.; Sigmund, Ole. Inverse design in photonics by topology optimization: tutorial. JOSA B, 38.2: 496-509, 2021.
[25] Sullivan, Dennis M. Electromagnetic simulation using the FDTD method. John Wiley & Sons, 2013.
[26] Molesky, Sean, et al. Inverse design in nanophotonics. Nature Photonics, 12.11: 659-670, 2018.
[27] F. Wang, B. S. Lazarov, and O. Sigmund, On projection methods, convergence and robust formulations in topology optimization, Struct. Multidicip. Optim. 43, 767-784, 2011.
[28] B. S. Lazarov and O. Sigmund, Filters in topology optimization based on Helmholtz-type differential equations, Int. J. Numer. Methods Eng. 86, 765-781, 2011.
[29] Reddy, Junuthula Narasimha. Introduction to the finite element method. McGraw-Hill Education, 2019.
[30] Hall, Alastair. Generalized method of moments. Oxford, 2004.
[31] Kunz, Karl S.; Luebbers, Raymond J. The finite difference time domain method for electromagnetics. CRC press, 1993.
[32] Kogelnik, Herwig; Jopson, Robert M.; Nelson, Lynn E. Polarization-mode dispersion. In: Optical Fiber Telecommunications IV-B. Academic Press p. 725-861, 2002.
[33] Youngworth, Kathleen S.; Brown, Thomas G. Focusing of high numerical aperture cylindrical-vector beams. Optics Express, 7.2: 77-87, 2000.