| 研究生: |
張怡婷 Chang, Yi-Ting |
|---|---|
| 論文名稱: |
近紅外光驅動中孔洞二氧化矽金奈米棒作為藥物遞送平台 Near-Infrared Light-activatable Mesoporous Silica-coated Au Nanorods as a Drug Delivery Platform |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 近紅外光 、金奈米棒 、中孔洞二氧化矽 、去氧核醣核酸 、小片段干擾核糖核酸 、藥物控制釋放 |
| 外文關鍵詞: | Near-Infrared, Gold nanorods, Mesoporous silica, DNA, siRNA, Control Drug Release |
| 相關次數: | 點閱:105 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於生物組織對於近紅外光區段有最小的吸收係數與相對較大的穿透度。在適合的雷射波長與強度照射下,可對生物組織達到最小的傷害,達到更好的分析深度。因此,可將此概念應用於藥物載體與釋放之動力學上。為改善傳統藥物載體在運送過程藥物逐漸釋放的缺點,本研究以雙股去氧核醣核酸(Deoxyribonucleic acid,DNA)作為藥物載體的開關,希望透過光驅動藥物控制釋放(light triggered control drug release)之機制,使雙股DNA去雜交並釋放抗癌藥物doxorubicin;與過去研究不同的是:在藥物控制釋放系統中,以往藥物載體開關打開後,無其他應用功能;本研究,以小片段干擾雙股核糖核酸(small interfering Ribonucleic acid,siRNA)作為開關,以增加開關被打開時的功能性,藉此展示以基因治療工程並結合藥物釋放以達到最佳治療效用。
本篇論文研究,以近紅外光可調式之金奈米棒,包覆上具有高承載量及生物相容性高的多孔洞二氧化矽殼層作為藥物載體,並裝填抗癌藥物(doxorubicin)。藉雙股DNA為開關,在近紅外光的照射下,金奈米棒將光能轉換成熱能,該熱能會繼續轉移至表面的雙股DNA,使雙股DNA受熱去雜交,並使藥物釋放出來,進而殺死癌細胞。另外,延伸以GFP-22之siRNA作為開關,以展示siRNA去雜交後進入細胞核內,並達到基因治療的功用。本研究結合藥物控制釋放以及基因工程治療,在此雙重治療下,達成更有效率地治療效果。使得多孔洞二氧化矽金奈米棒結合搭載不同功能的siRNA,在生物醫學應用上具有發展的潛力。
The near-infrared (NIR) region, where tissue transmission is optimal due to low scattering and energy absorption, provides maximum irradiation penetration through tissue and often utilizes NIR window applied in biology, such as drug release. To improve the defect of conventional carriers gradually released the interior drug in the duration of drug release, using double-stranded DNA as the caps of drug carrier made the DNA proceed dehybridization to release the interior anti-cancer drug doxorubicin via light triggered control drug release. In the drug control & release dynamic system, this work was different from the conventional carriers that have no other applied functions after switch-on the caps. Besides, the other cap, siRNA, was also utilized in this work to display the optimal therapeutic effectiveness by the combination of gene therapy and drug release to apparently elevate its functionality as switching-on.
In this study, of gold nanorods by tuning their aspect ratio, adsorb on the mesoporous silica shell of high capacity and excellent biocompatibility to load the doxorubicin. Gold nanorods are capable of high efficiently to convert absorbed radiation into heat in the exposure of NIR. The heat would transfer to the double-stranded DNA coated on the surface of nanomaterials to make it dehybridized, and sequentially control the dynamics of drug release to easily eliminate cancer cells. Furthermore, the other extension of this research was to use GFP-22 siRNA as the cap and demonstrated the dehybridized siRNA would be transferred into the nucleus to prove the function of the nanomaterials in gene therapy. This novel platform is to serve as not only a chemotherapeutic agent but also a gene therapeutic agent to efficiently and synergistically kill malignant cells. These results might suggest that this novel material is capable of the potential in bio-medical applications.
參考文獻
1. Deki, S.; Sayo, K.; Fujita T.; Yamadaa, A.; Hayashib, S.,Dispersion of nano-sized gold particles into polymers: dependence on terminal groups of polymers and morphology of vapor-deposited gold. J. Mater. Chem., 1999, 9, 943–947.
2. 莊萬發, 超微粒子理論應用. 復漢出版社, 1995.
3. 王崇人, 神奇的奈米科學. 科學發展月刊 2002, 354, 48-51.
4. Alivisatos, A. P., Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem. 1996, 100 (31), 13226-13239.
5. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996, 271, 933-937.
6. Nuzzo, R. G.; Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A., Nanostructured Plasmonic Sensors. Chem. Rev. 2008, 108 (2), 494-521.
7. Nagatani, N.; Shinkai, M.; Honda, H.; Kobayashi, T., Gene delivery for genetically engineered mucosal cells with enhanced function. Bioteclnol. Lett. 2000, 22, 999-1002.
8. Davids, M. J.; Taylor, J. I.; Sachsinger, N.; Bruce, I. J., Isolation of Plasmid DNA Using Magnetite as a Solid-Phase Adsorbent. Analytical Biochemirtry 1998,262, 92-94.
9. Grabar, K.C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and Characterization of Au Colloid Monolayers. J. Anal. Chem. 1995, 67,735-743.
10. Weissleder, R., A Clearer Vision for In Vivo Imaging. Nat. Biotechnol. 2001, 19, 316-317.
11. Chen, C. C.; Lin, Y. P.; Wang, C. W.; Tzeng, H. C.; Wu, C. H.; Chen, Y. C.; Chen, C. P.; Chen, L. C.; Wu, Y. C., DNA−Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by Near Infrared Irradiation. J. Am. Chem. Soc. 2006, 128, 3709-3715.
12. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 2008, 41 (12), 1578-1586.
13. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.
14. P´erez-Juste, J.; Pastoriza-Santos, I.; Liz-Marz´an, L. M.; Mulvaney, P., Gold nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 2005, 249, 1870–1901.
15. Martin, C. R., Nanomaterials: A Membrane-Based Synthetic Approach. Science, 1994, 266, 1961-1966.
16. Martin, C. R., Membrane-Based Synthesis of Nanomaterials. Chem. Mater. 1996, 8, 1739-1746.
17. Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C., Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B 1997, 101, 6661-666.
18. Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C.; Wang, C. R. C., The Shape Transition of Gold Nanorods. Langmuir, 1999, 15, 701-709.
19. Reetz, M. T.; Helbig, W., Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994, 116, 7401-7402.
20. Jana, N. R.; Gearheart, L.; Murphy, C. J., Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chem. Mater. 2001, 13, 2313-2322.
21. Jana, N. R.; Gearheart, L.; Murphy, C. J., Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles. Langmuir, 2001, 17, 6782-6786.
22. Huang, X.; Neretina, S.; El-Sayed, M. A., Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 2009, 21 (48), 4880-4910.
23. Zhu, Y.; Ikoma, T.; Hanagata, N.; Kaskel, S., Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres as Carriers for Drug Delivery. Small 2010, 6 (3), 471-478.
24. Popplewell, J. F.; King, S. J.; Day, J. P.; Ackrill, P.; Fifield, L. K.; Cresswell, R. G.; Tada, M. L. d.; Liu, K., Kinetics of Uptake and Elimination of Silicic Acid by a Human Subject: A Novel Application of 32Si and Accelerator Mass Spectrometry. J. Inorg. Biochem. 1998, 69 (3), 177-180.
25. Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A Mesoporous Silica Nanosphere- Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. J. Am. Chem. Soc. 2003, 125, 4451–4459.
26. Radu, D. R.; Lai, C.-Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y., Fine-Tuning the Degree of Organic Functionalization of Mesoporous Silica Nanosphere Materials via an Interfacially Designed Co-condensation Method. J. Am.Chem. Soc. 2004, 126, 13216–13217.
27. Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y., Mesoporous Silica Nanoparticles for Intracellular Delivery of Membrane-Impermeable Proteins. J. Am. Chem. Soc. 2007, 129, 8845–8849.
28. Park, C.; Oh, K.; Lee, S. C.; Kim, C., Controlled Release of Guest Molecules from Mesoporous Silica Particles Based on a pH-Responsive Polypseudorotaxane Motif. Angew. Chem. Int. Ed. 2007, 46, 1455-1457.
29. Chen, L.; Di, J.; Cao, C.; Zhao, Y.; Ma, Y.; Luo, J.; Wen, Y.; Song, W.; Song, Y.; Jiang, L., A pH-driven DNA nanoswitch for responsive controlled release. Chem. Commun., 2011, 47, 2850-2852.
30. Meng, H.; Xue, M.; Xia, T.; Zhao, Y.; Tamanoi, F.; Stoddart, J. F.; Zink, J. I.; Nel, A. E., Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. J. Am. Chem. Soc. 2010, 132, 12690–12697.
31. Zhao, Y.; Li, Z.; Kabehie, S.; Botros, Y. Y.; Stoddart, J. F.; Zink, J. I., pH-Operated Nanopistons on the Surfaces of Mesoporous Silica Nanoparticles. J. Am. Chem. Soc., 2010, 132, 13016–1302.
32. Aznar, E.; Marcos, M. D.; Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Amorós P.; Guillem, C., pH- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports. J. Am. Chem. Soc., 2009, 131, 6833–6843.
33. Casasús, R.; Climent, E.; Marcos, M. D.; Martínez-Mañez, R.; Sancenón, F.; Soto, J.; Amorós, P.; Cano, J.; Ruiz, E., Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. J. Am. Chem. Soc., 2008, 130, 1903–1917.
34. Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P., pH-Responsive Nanogated Ensemble Based on Gold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker. J. Am. Chem. Soc., 2010, 132, 1500–1501.
35. Fu, Q.; Rao, G. V. R.; Ista, L. K.; Wu, Y.; Andrzejewski, B. P.; Sklar, L. A.; Ward, T. L.; Lopez, G. P. Control of Molecular Transport Through Stimuli-Responsive Ordered Mesopor ous Materials. Adv. Mater. 2003, 15, 1262–1266.
36. Ruiz-Hernandez, E.; Baeza, A.; Vallet-Regı´, M., Smart Drug Delivery through DNA/Magnetic Nanoparticle Gates. ACS Nano, 2011, 5 (2), 1259–1266.
37. Hernandez, R.; Tseng, H.-R.; Wong, J. W.; Stoddart, J. F.; Zink, J. I., An Operational Supramolecular Nanovalve. J. Am. Chem. Soc. 2004, 126, 3370–3371.
38. Nguyen, T. D.; Tseng, H.-R.; Celestre, P. C.; Flood, A. H.; Liu, Y.; Stoddart, J. F.; Zink, J. I., A Reversible Molecular Valve. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10029–10034.
39. Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C. F.; Stoddart, J. F.; Zink, J. I., Design and Optimization of Molecular Nanovalves Based on Redox-Switchable Bistable Rotaxanes. J. Am. Chem. Soc. 2007, 129, 626–634.
40. Liu, R.; Zhao, X.; Wu, T.; Feng, P., Tunable Redox-Responsive Hybrid Nanogated Ensembles. J. Am. Chem. Soc. 2008, 130, 14418–14419.
41. Patel, K.; Angelos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y.-W.; Zink, J. I.; Stoddart, J. F., Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. J. Am. Chem. Soc. 2008, 130, 2382–2383.
42. Climent, E.; Bernardos, A.; Martínez-Máñez, R.; Maquieira, A.; Marcos, M. D.; Pastor-Navarro, N.; Puchades, R.; Sancenón, F.; Soto, J.; Amorós, P., Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. J. Am. Chem. Soc., 2009, 131, 14075–14080.
43. Mayer, G.; Heckel, A., Biologically Active Molecules with a “Light Switch”. Angew. Chem. Int. Ed. 2006, 45, 4900 – 4921.
44. Lin, Q.; Huang, Q.; Li, Q.; Li, C.; Bao, C.; Liu, Z.; Li, F.; Zhu, L., Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process. J. Am. Chem. Soc. 2010, 132, 10645–10647.
45. Kostiainen1, M.A.; Smith, D.K.; Ikkala O., Optically Triggered Release of DNA from Multivalent Dendrons by Degrading and Charge-Switching Multivalency. Angew. Chem. Int. Ed. 2007, 46, 7600–7604.
46. Nitiss, J.L., Targeting DNA Topoisomerase II in Cancer Chemotherapy. Nature Reviews Cancer, 2009, 9, 338-350.
47. Hamilton, A.; Baulcombe, D., A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999, 286, 950-952.
48. Elbashir, S.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001, 411, 494-498.
49. Kawano, T.; Niidome, Y.; Mori, T.; Katayama, Y.; Niidome, T., PNIPAM Gel-Coated Gold Nanorods for Targeted Delivery Responding to a Near-Infrared Laser. Bioconjugate Chem. 2009, 20, 209–212.
50. Cheng, F.-Y.; Su, C.-H.; Wu, P.-C.; Yeh, C.-S., Multifunctional Polymeric Nanoparticles for Combined Chemotherapeutic and Near-Infrared Photothermal Cancer Therapy In Vitro and In Vivo. Chem. Commun. 2010, 46 (18), 3167-3169.
51. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.-H.; Yoo, K.-H., Multifunctional Nanoparticles for Combined Doxorubicin and Photothermal Treatments. ACS Nano 2009, 3 (10), 2919-2926.
52. You, J.; Shao, R.; Wei, X.; Gupta, S.; Li, C., Near-Infrared Light Triggers Release of Paclitaxel from Biodegradable Microspheres: Photothermal Effect and Enhanced Antitumor Activity. Small 2010, 6 (9), 1022-1031.
53. Radt, B.; Smith, T. A.; Caruso, F., Optically Addressable Nanostructured Capsules. Adv. Mater. 2004, 16 (23-24), 2184-2189.
54. Angelatos, A. S.; Radt, B.; Caruso, F., Light-Responsive Polyelectrolyte/Gold Nanoparticle Microcapsules. J. Phys. Chem. B 2005, 109 (7), 3071-3076.
55. Volodkin, D. V.; Skirtach, A. G.; Mӧhwald, H., Near-IR Remote Release from Assemblies of Liposomes and Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 1807-1809.
56. Wu, G.; Mikhailovsky, A.; Khant, H. A.; Fu, C.; Chiu, W.; Zasadzinski, J. A., Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells. J. Am. Chem. Soc. 2008, 130 (26), 8175-8177.
57. Kang, H.; Trondoli, A. C.; Zhu, G.; Chen, Y.; Chang, Y.-J.; Liu, H.; Huang, Y-F.; Zhang, X.; Tan, W., Near-Infrared Light-Responsive Core_Shell Nanogels for Targeted Drug Delivery. ACS nano, 2011, 5094-5099.
58. Oishi, M.; Nakamura, T.; Jinji, Y.; Matsuishi, K.; Nagasaki, Y., Multi-Stimuli-Triggered Release of Charged Dye from Smart PEGylated Nanogels Containing Gold Nanoparticles to Regulate Fluorescence Signals. J. Mater. Chem. 2009, 19 (33), 5909-5912.
59. Bikram, M.; Gobin, A. M.; Whitmire, R. E.; West, J. L., Temperature-Sensitive Hydrogels with SiO2–Au Nanoshells for Controlled Drug Delivery. J. Control. Release 2007, 123 (3), 219-227.
60. Ikari,K.; Suzuki, K.; Imai, H., Grain Size Control of Mesoporous Silica and Formation of Bimodal Pore Structures. Langmuir, 2004, 20, 11504-11508.
校內:2013-01-19公開