簡易檢索 / 詳目顯示

研究生: 張怡婷
Chang, Yi-Ting
論文名稱: 近紅外光驅動中孔洞二氧化矽金奈米棒作為藥物遞送平台
Near-Infrared Light-activatable Mesoporous Silica-coated Au Nanorods as a Drug Delivery Platform
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 近紅外光金奈米棒中孔洞二氧化矽去氧核醣核酸小片段干擾核糖核酸藥物控制釋放
外文關鍵詞: Near-Infrared, Gold nanorods, Mesoporous silica, DNA, siRNA, Control Drug Release
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於生物組織對於近紅外光區段有最小的吸收係數與相對較大的穿透度。在適合的雷射波長與強度照射下,可對生物組織達到最小的傷害,達到更好的分析深度。因此,可將此概念應用於藥物載體與釋放之動力學上。為改善傳統藥物載體在運送過程藥物逐漸釋放的缺點,本研究以雙股去氧核醣核酸(Deoxyribonucleic acid,DNA)作為藥物載體的開關,希望透過光驅動藥物控制釋放(light triggered control drug release)之機制,使雙股DNA去雜交並釋放抗癌藥物doxorubicin;與過去研究不同的是:在藥物控制釋放系統中,以往藥物載體開關打開後,無其他應用功能;本研究,以小片段干擾雙股核糖核酸(small interfering Ribonucleic acid,siRNA)作為開關,以增加開關被打開時的功能性,藉此展示以基因治療工程並結合藥物釋放以達到最佳治療效用。
    本篇論文研究,以近紅外光可調式之金奈米棒,包覆上具有高承載量及生物相容性高的多孔洞二氧化矽殼層作為藥物載體,並裝填抗癌藥物(doxorubicin)。藉雙股DNA為開關,在近紅外光的照射下,金奈米棒將光能轉換成熱能,該熱能會繼續轉移至表面的雙股DNA,使雙股DNA受熱去雜交,並使藥物釋放出來,進而殺死癌細胞。另外,延伸以GFP-22之siRNA作為開關,以展示siRNA去雜交後進入細胞核內,並達到基因治療的功用。本研究結合藥物控制釋放以及基因工程治療,在此雙重治療下,達成更有效率地治療效果。使得多孔洞二氧化矽金奈米棒結合搭載不同功能的siRNA,在生物醫學應用上具有發展的潛力。

    The near-infrared (NIR) region, where tissue transmission is optimal due to low scattering and energy absorption, provides maximum irradiation penetration through tissue and often utilizes NIR window applied in biology, such as drug release. To improve the defect of conventional carriers gradually released the interior drug in the duration of drug release, using double-stranded DNA as the caps of drug carrier made the DNA proceed dehybridization to release the interior anti-cancer drug doxorubicin via light triggered control drug release. In the drug control & release dynamic system, this work was different from the conventional carriers that have no other applied functions after switch-on the caps. Besides, the other cap, siRNA, was also utilized in this work to display the optimal therapeutic effectiveness by the combination of gene therapy and drug release to apparently elevate its functionality as switching-on.
    In this study, of gold nanorods by tuning their aspect ratio, adsorb on the mesoporous silica shell of high capacity and excellent biocompatibility to load the doxorubicin. Gold nanorods are capable of high efficiently to convert absorbed radiation into heat in the exposure of NIR. The heat would transfer to the double-stranded DNA coated on the surface of nanomaterials to make it dehybridized, and sequentially control the dynamics of drug release to easily eliminate cancer cells. Furthermore, the other extension of this research was to use GFP-22 siRNA as the cap and demonstrated the dehybridized siRNA would be transferred into the nucleus to prove the function of the nanomaterials in gene therapy. This novel platform is to serve as not only a chemotherapeutic agent but also a gene therapeutic agent to efficiently and synergistically kill malignant cells. These results might suggest that this novel material is capable of the potential in bio-medical applications.

    摘要 I Abstract II 誌謝 IV 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1奈米材料簡介 1 1-1-1奈米材料特性 2 1-1-2奈米材料穩定性與表面修飾 4 1-1-3金屬奈米材料光學性質 4 1-2生醫材料之光學選擇 6 1-3金奈米棒介紹與應用 8 1-3-1金奈米棒之合成 8 1-3-2金奈米棒之表面電漿共振 9 1-4中孔洞二氧化矽材料介紹與應用 11 1-4-1中孔洞二氧化矽作為藥物載體 11 1-4-2中孔洞二氧化矽之控制藥物釋放系統 12 1-5抗癌藥物Doxorubicin介紹與應用 16 1-6 siRNA簡介與應用 18 第二章 實驗藥品與儀器設備 20 2-1實驗藥品 20 2-1-1合成Au NRs@mSiO2奈米材料之化學藥品 20 2-1-2合成Au NRs@mSiO2-dox-dsDNA奈米材料之化學藥品 21 2-1-3細胞實驗所需之化學藥品 22 2-1-4實驗細胞株 23 2-2儀器設備 24 2-2-1合成Au NRs@mSiO2-Dox-dsDNA與細胞實驗之儀器分析 24 第三章中孔洞二氧化矽金奈米棒作為抗癌藥物之載體於近紅外光驅動雙股DNA /siRNA開關促使藥物釋放與癌細胞治療之合成與應用 27 3-1研究動機與目的 27 3-2實驗設計概念 29 3-3中孔洞二氧化矽金奈米棒作為藥物釋放載體之合成與應用 30 3-3-1製備金奈米棒(Au Nanorods,Au NRs) 30 3-3-2製備中孔洞二氧化矽金奈米棒(Au NRs@mSiO2) 31 3-3-3製備中孔洞二氧化矽金奈米棒表面修飾3-丙胺三乙氧基矽烷,APTES (Au NRs@mSiO2 - APTES) 32 3-3-4製備表面修飾APTES之中孔洞二氧化矽金奈米棒再修飾交聯劑GMBS (Au NRs@mSiO2 – APTES-GMBS) 32 3-3-5雙股DNA的合成 33 3-3-6製備裝載抗癌藥物Doxorubicin之中孔洞二氧化矽金奈米棒並接上雙股DNA 33 3-3-7製備中孔洞二氧化矽金奈米棒並接上有修飾螢光分子(FAM)之雙股DNA 34 3-3-8製備中孔洞二氧化矽金奈米棒並接上siRNA(GFP-22) 34 3-3-9裝載抗癌藥物Doxorubicin材料與照射近紅外光進行藥物釋放之細胞毒性測試 34 3-3-10 Au NRs@mSiO2-dsDNA(FAM)/Au NRs@mSiO2-Dox-dsDNA穩定度測試 36 3-3-11 Au NRs@mSiO2-Dox-dsDNA照射連續波二極體808 nm近紅外雷射進行藥物釋放 37 3-4實驗結果與討論 38 3-4-1 AuNRs@mSiO2-APTES-GMBS材料鑑定:UV-vis、TEM、Zetapotential、IR、XRD 38 3-4-2 Au NRs@mSiO2於BET-BJH的鑑定 43 3-4-3 Au NRs@mSiO2-APTES-GMBS裝填Dox以及雙股DNA定量 45 3-4-4 Au NRs@mSiO2 –dsDNA(FAM)之穩定測試 46 3-4-5 Au NRs@mSiO2-dox-dsDNA之穩定測試 47 3-4-6 Au NRs/Au NRs@mSiO2-dox-dsDNA之升溫曲線 48 3-4-7 Au NRs@mSiO2-dsDNA(FAM)與Au NRs@mSiO2-Dox-dsDNA於808 nm近紅外雷射照射進行雙股DNA去雜交與藥物控制釋放 49 3-4-8 Au NRs@mSiO2-Dox-dsDNA與A549 cells培養吞噬量 51 3-4-9 Au NRs@mSiO2-Dox-dsDNA進行細胞毒性測試 51 3-4-10 Au NRs@mSiO2-Dox-dsDNA於雷射照射後進行細胞毒性測試 52 3-4-11觀察Dox在細胞內經雷射照射後的行為 54 3-4-12材料 Au NRs@mSiO2-siRNA與轉殖綠色螢光蛋白之子宮頸癌細胞(HeLa cells)培養後進行雷射照射,觀察siRNA對細胞造成的影響 55 第四章結論 57 4-1結論 57 參考文獻 58 自述 65

    參考文獻
    1. Deki, S.; Sayo, K.; Fujita T.; Yamadaa, A.; Hayashib, S.,Dispersion of nano-sized gold particles into polymers: dependence on terminal groups of polymers and morphology of vapor-deposited gold. J. Mater. Chem., 1999, 9, 943–947.
    2. 莊萬發, 超微粒子理論應用. 復漢出版社, 1995.
    3. 王崇人, 神奇的奈米科學. 科學發展月刊 2002, 354, 48-51.
    4. Alivisatos, A. P., Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem. 1996, 100 (31), 13226-13239.
    5. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996, 271, 933-937.
    6. Nuzzo, R. G.; Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A., Nanostructured Plasmonic Sensors. Chem. Rev. 2008, 108 (2), 494-521.
    7. Nagatani, N.; Shinkai, M.; Honda, H.; Kobayashi, T., Gene delivery for genetically engineered mucosal cells with enhanced function. Bioteclnol. Lett. 2000, 22, 999-1002.
    8. Davids, M. J.; Taylor, J. I.; Sachsinger, N.; Bruce, I. J., Isolation of Plasmid DNA Using Magnetite as a Solid-Phase Adsorbent. Analytical Biochemirtry 1998,262, 92-94.
    9. Grabar, K.C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and Characterization of Au Colloid Monolayers. J. Anal. Chem. 1995, 67,735-743.
    10. Weissleder, R., A Clearer Vision for In Vivo Imaging. Nat. Biotechnol. 2001, 19, 316-317.
    11. Chen, C. C.; Lin, Y. P.; Wang, C. W.; Tzeng, H. C.; Wu, C. H.; Chen, Y. C.; Chen, C. P.; Chen, L. C.; Wu, Y. C., DNA−Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by Near Infrared Irradiation. J. Am. Chem. Soc. 2006, 128, 3709-3715.
    12. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 2008, 41 (12), 1578-1586.
    13. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.
    14. P´erez-Juste, J.; Pastoriza-Santos, I.; Liz-Marz´an, L. M.; Mulvaney, P., Gold nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 2005, 249, 1870–1901.
    15. Martin, C. R., Nanomaterials: A Membrane-Based Synthetic Approach. Science, 1994, 266, 1961-1966.
    16. Martin, C. R., Membrane-Based Synthesis of Nanomaterials. Chem. Mater. 1996, 8, 1739-1746.
    17. Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C., Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B 1997, 101, 6661-666.
    18. Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C.; Wang, C. R. C., The Shape Transition of Gold Nanorods. Langmuir, 1999, 15, 701-709.
    19. Reetz, M. T.; Helbig, W., Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994, 116, 7401-7402.
    20. Jana, N. R.; Gearheart, L.; Murphy, C. J., Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chem. Mater. 2001, 13, 2313-2322.
    21. Jana, N. R.; Gearheart, L.; Murphy, C. J., Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles. Langmuir, 2001, 17, 6782-6786.
    22. Huang, X.; Neretina, S.; El-Sayed, M. A., Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 2009, 21 (48), 4880-4910.
    23. Zhu, Y.; Ikoma, T.; Hanagata, N.; Kaskel, S., Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres as Carriers for Drug Delivery. Small 2010, 6 (3), 471-478.
    24. Popplewell, J. F.; King, S. J.; Day, J. P.; Ackrill, P.; Fifield, L. K.; Cresswell, R. G.; Tada, M. L. d.; Liu, K., Kinetics of Uptake and Elimination of Silicic Acid by a Human Subject: A Novel Application of 32Si and Accelerator Mass Spectrometry. J. Inorg. Biochem. 1998, 69 (3), 177-180.
    25. Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A Mesoporous Silica Nanosphere- Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. J. Am. Chem. Soc. 2003, 125, 4451–4459.
    26. Radu, D. R.; Lai, C.-Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y., Fine-Tuning the Degree of Organic Functionalization of Mesoporous Silica Nanosphere Materials via an Interfacially Designed Co-condensation Method. J. Am.Chem. Soc. 2004, 126, 13216–13217.
    27. Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y., Mesoporous Silica Nanoparticles for Intracellular Delivery of Membrane-Impermeable Proteins. J. Am. Chem. Soc. 2007, 129, 8845–8849.
    28. Park, C.; Oh, K.; Lee, S. C.; Kim, C., Controlled Release of Guest Molecules from Mesoporous Silica Particles Based on a pH-Responsive Polypseudorotaxane Motif. Angew. Chem. Int. Ed. 2007, 46, 1455-1457.
    29. Chen, L.; Di, J.; Cao, C.; Zhao, Y.; Ma, Y.; Luo, J.; Wen, Y.; Song, W.; Song, Y.; Jiang, L., A pH-driven DNA nanoswitch for responsive controlled release. Chem. Commun., 2011, 47, 2850-2852.
    30. Meng, H.; Xue, M.; Xia, T.; Zhao, Y.; Tamanoi, F.; Stoddart, J. F.; Zink, J. I.; Nel, A. E., Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. J. Am. Chem. Soc. 2010, 132, 12690–12697.
    31. Zhao, Y.; Li, Z.; Kabehie, S.; Botros, Y. Y.; Stoddart, J. F.; Zink, J. I., pH-Operated Nanopistons on the Surfaces of Mesoporous Silica Nanoparticles. J. Am. Chem. Soc., 2010, 132, 13016–1302.
    32. Aznar, E.; Marcos, M. D.; Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Amorós P.; Guillem, C., pH- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports. J. Am. Chem. Soc., 2009, 131, 6833–6843.
    33. Casasús, R.; Climent, E.; Marcos, M. D.; Martínez-Mañez, R.; Sancenón, F.; Soto, J.; Amorós, P.; Cano, J.; Ruiz, E., Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. J. Am. Chem. Soc., 2008, 130, 1903–1917.
    34. Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P., pH-Responsive Nanogated Ensemble Based on Gold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker. J. Am. Chem. Soc., 2010, 132, 1500–1501.
    35. Fu, Q.; Rao, G. V. R.; Ista, L. K.; Wu, Y.; Andrzejewski, B. P.; Sklar, L. A.; Ward, T. L.; Lopez, G. P. Control of Molecular Transport Through Stimuli-Responsive Ordered Mesopor ous Materials. Adv. Mater. 2003, 15, 1262–1266.
    36. Ruiz-Hernandez, E.; Baeza, A.; Vallet-Regı´, M., Smart Drug Delivery through DNA/Magnetic Nanoparticle Gates. ACS Nano, 2011, 5 (2), 1259–1266.
    37. Hernandez, R.; Tseng, H.-R.; Wong, J. W.; Stoddart, J. F.; Zink, J. I., An Operational Supramolecular Nanovalve. J. Am. Chem. Soc. 2004, 126, 3370–3371.
    38. Nguyen, T. D.; Tseng, H.-R.; Celestre, P. C.; Flood, A. H.; Liu, Y.; Stoddart, J. F.; Zink, J. I., A Reversible Molecular Valve. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10029–10034.
    39. Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C. F.; Stoddart, J. F.; Zink, J. I., Design and Optimization of Molecular Nanovalves Based on Redox-Switchable Bistable Rotaxanes. J. Am. Chem. Soc. 2007, 129, 626–634.
    40. Liu, R.; Zhao, X.; Wu, T.; Feng, P., Tunable Redox-Responsive Hybrid Nanogated Ensembles. J. Am. Chem. Soc. 2008, 130, 14418–14419.
    41. Patel, K.; Angelos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y.-W.; Zink, J. I.; Stoddart, J. F., Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. J. Am. Chem. Soc. 2008, 130, 2382–2383.
    42. Climent, E.; Bernardos, A.; Martínez-Máñez, R.; Maquieira, A.; Marcos, M. D.; Pastor-Navarro, N.; Puchades, R.; Sancenón, F.; Soto, J.; Amorós, P., Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. J. Am. Chem. Soc., 2009, 131, 14075–14080.
    43. Mayer, G.; Heckel, A., Biologically Active Molecules with a “Light Switch”. Angew. Chem. Int. Ed. 2006, 45, 4900 – 4921.
    44. Lin, Q.; Huang, Q.; Li, Q.; Li, C.; Bao, C.; Liu, Z.; Li, F.; Zhu, L., Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process. J. Am. Chem. Soc. 2010, 132, 10645–10647.
    45. Kostiainen1, M.A.; Smith, D.K.; Ikkala O., Optically Triggered Release of DNA from Multivalent Dendrons by Degrading and Charge-Switching Multivalency. Angew. Chem. Int. Ed. 2007, 46, 7600–7604.
    46. Nitiss, J.L., Targeting DNA Topoisomerase II in Cancer Chemotherapy. Nature Reviews Cancer, 2009, 9, 338-350.
    47. Hamilton, A.; Baulcombe, D., A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999, 286, 950-952.
    48. Elbashir, S.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001, 411, 494-498.
    49. Kawano, T.; Niidome, Y.; Mori, T.; Katayama, Y.; Niidome, T., PNIPAM Gel-Coated Gold Nanorods for Targeted Delivery Responding to a Near-Infrared Laser. Bioconjugate Chem. 2009, 20, 209–212.
    50. Cheng, F.-Y.; Su, C.-H.; Wu, P.-C.; Yeh, C.-S., Multifunctional Polymeric Nanoparticles for Combined Chemotherapeutic and Near-Infrared Photothermal Cancer Therapy In Vitro and In Vivo. Chem. Commun. 2010, 46 (18), 3167-3169.
    51. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.-H.; Yoo, K.-H., Multifunctional Nanoparticles for Combined Doxorubicin and Photothermal Treatments. ACS Nano 2009, 3 (10), 2919-2926.
    52. You, J.; Shao, R.; Wei, X.; Gupta, S.; Li, C., Near-Infrared Light Triggers Release of Paclitaxel from Biodegradable Microspheres: Photothermal Effect and Enhanced Antitumor Activity. Small 2010, 6 (9), 1022-1031.
    53. Radt, B.; Smith, T. A.; Caruso, F., Optically Addressable Nanostructured Capsules. Adv. Mater. 2004, 16 (23-24), 2184-2189.
    54. Angelatos, A. S.; Radt, B.; Caruso, F., Light-Responsive Polyelectrolyte/Gold Nanoparticle Microcapsules. J. Phys. Chem. B 2005, 109 (7), 3071-3076.
    55. Volodkin, D. V.; Skirtach, A. G.; Mӧhwald, H., Near-IR Remote Release from Assemblies of Liposomes and Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 1807-1809.
    56. Wu, G.; Mikhailovsky, A.; Khant, H. A.; Fu, C.; Chiu, W.; Zasadzinski, J. A., Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells. J. Am. Chem. Soc. 2008, 130 (26), 8175-8177.
    57. Kang, H.; Trondoli, A. C.; Zhu, G.; Chen, Y.; Chang, Y.-J.; Liu, H.; Huang, Y-F.; Zhang, X.; Tan, W., Near-Infrared Light-Responsive Core_Shell Nanogels for Targeted Drug Delivery. ACS nano, 2011, 5094-5099.
    58. Oishi, M.; Nakamura, T.; Jinji, Y.; Matsuishi, K.; Nagasaki, Y., Multi-Stimuli-Triggered Release of Charged Dye from Smart PEGylated Nanogels Containing Gold Nanoparticles to Regulate Fluorescence Signals. J. Mater. Chem. 2009, 19 (33), 5909-5912.
    59. Bikram, M.; Gobin, A. M.; Whitmire, R. E.; West, J. L., Temperature-Sensitive Hydrogels with SiO2–Au Nanoshells for Controlled Drug Delivery. J. Control. Release 2007, 123 (3), 219-227.
    60. Ikari,K.; Suzuki, K.; Imai, H., Grain Size Control of Mesoporous Silica and Formation of Bimodal Pore Structures. Langmuir, 2004, 20, 11504-11508.

    無法下載圖示 校內:2013-01-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE