| 研究生: |
曾子彥 Tseng, Zi-Yan |
|---|---|
| 論文名稱: |
微小型液壓伺服閥以動圈式線性馬達驅動之設計與控制 Design and control of micro hydraulic servo valve driven by moving coil linear motor |
| 指導教授: |
施明璋
Shih, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 液壓閥控制 、液壓數學模型 、高響應伺服閥 |
| 外文關鍵詞: | control of hydraulic servo valve, hydraulic component mathematical model, fast response servo valve |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液壓控制閥是液壓系統中重要的控制元件,使用液體作為工作介質不僅具有高壓的操作環境、響應快速、能量轉移效率高一直是液壓系統的優點,代表液壓系統的機械效率亦高,故研究一個為小型液壓伺服閥對於液壓系統是非常有幫助的,未來工業產品都會朝向小型化、高響應發展。
在液壓伺服閥設計中,最重要的部分為閥芯與襯套,兩個機件的外型與孔口尺度直接影響著微小型伺服閥先天的效能,本文中,首先訂定欲設計之液壓伺服閥體積大小、操作壓力與流量,閥芯與襯套外型與尺度將經過物理定律的推測與模擬分析來決定,並且選用市售最小規格之管用接頭完成設計,搭配使用高響應與線性推力的動圈式馬達、高解析度的渦電流位移計,以及高運算速度的微控制器,來完成液壓伺服閥的硬體部分,考慮液壓伺服閥在長時間使用條件下系統參數可能發生變化,使用可以即時辨別系統參數,且根據系統參數設計調整控制器參數的自調式控制器(STR),以及系統需要快速暫態響應場合,兩段式的非線性PI控制器,控制器第一段在特定的誤差邊界外採用特定控制輸出,第二段在特定的誤差邊界內使用PI控制器降低穩態誤差,非線性PI控制器使得微小型液壓伺服閥芯有高響應的步階定位,在伺服閥完成定位控制的條件下即可獲得對應的輸出流量。
Hydraulic control valves are important in hydraulic systems. Using oil as a medium not only dealing with high pressure environment but also bring a fast response. Hydraulic system even work with a high energy transfer density condition which is a high efficiently way. Improve and develop a better hydraulic control unit is valuable. The object of the thesis is about to design and research a small and fast response hydraulic servo valve. In the future, the size of the machines must become smaller and faster. Flow force and the shapes of spool and sleeve are the topics of servo valve design. The dimensions of servo valve are designed come out after applying physics principles and simulations. To build a fast servo valve combination, the servo valve is setup with high response, linear force moving coil linear motor, high resolution eddy current sensor and micro control unit. To yield a fast response and adaptive the variation of servo valve parameters, the self-tuning regulator(STR) and nonlinear PI controller, which is designed to yield a fast transient response and small steady state error, are used in the research. After the close loop spool control, we can yield an expected flow rate.
[1] W. Shuai, J. Zongxia, Y. Liang, Z. Rui, Y. Juntao, and C. Chin-Yin, “Development of a Direct-Drive Servo Valve With High-Frequency Voice Coil Motor and Advanced Digital Controller,” Mechatronics, IEEE/ASME Transactions on, vol. 19, pp. 932-942, 2014.
[2] G. Hong, W. Dayu, and X. Jinquan, “Research on a High-Frequency Response Direct Drive Valve System Based on Voice Coil Motor”, Power Electronics, IEEE Transactions on, vol. 28, pp. 2483-2492, 2013.
[3] L. Nascutiu, “Voice Coil Actuator for Hydraulic Servo Valves with High Transient Performances, “ in Automation, Quality and Testing, Robotics, 2006 IEEE International Conference on, 2006, pp. 185-190.
[4] Herbert E. Merritt, “Hydraulic Control Systems”, New York: John Wiley, 1967.
[5] Karl J. Astrom, Bjorn Wittenmark, “Adaptive Control”, Pearson Education Taiwan Ltd, 2006.
[6] Charles L. Phillips, H. Troy Nagle, “Digital Control System Analysis and Design”, Pearson Education international Inc, 1998.
[7] Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, Wade W. Huebsch, Fundamentals of Fluid Mechanics, John Wiley & Sons (Asia) Pte Ltd, 2010.
[8] D633 and D634 series direct drive servo-proportional control valves with integrated 24V electronics, Moog Inc., East Aurora, NY, USA [Online].Available: www.moog.com
[9] http://www.moog.com/literature/ICD/Valves-Introduction.pdf
[10] 吳南陽, “音圈馬達簡介設計、控制與應用”, 光電資訊雜誌, 第6、7期。
[11] 周溫成, 曾賢壎, “氣液壓學”, 高立圖書有限公司, 1996。
[12] Xudong Pan, Guanglin Wang, Zesheng Lu, “Flow field simulation and a flow model of servo-valve spool valve orifice”, Energy Conversion and Management, Volume 52, Issue 10, Pages 3249–3256, 2011.
[13] FrederikStefanski, BartoszMinorowicz, JohanPersson, AndrewPlummer, Chris Bowen, “Non-linear control of a hydraulic piezo-valve using a generalized Prandtl–Ishlinskii hysteresis model”, Mechanical Systems and Signal Processing, Volume 82, Pages 412–431, 2017.
[14] N. D. Vaughan, J. B. Gamble, “The Modeling and Simulation of a Proportional Solenoid Valve”, Journal of Dynamic Systems, Measurement, and Control, Vol. 118, Pages 121-125, 1996.
[15] Niko Herakovi, “Č Flow-Force Analysis in a Hydraulic Sliding-Spool Valve”, Strojarstvo, 51 (6), Pages 555-564, 2009
[16] 賴建名, “壓電致動器驅動油壓控制閥設計與控制之研究”, 國立成功大學工程研究所碩士論文, 2014.
[17] 黃國鑫, “比例閥閥軸流動力分析應用”, 逢甲大學機械工程研究所碩士論文, 1998.
[18] 蔡名軒, “節能液壓電磁閥與邏輯閥分析設計”, 國立雲林科技大學機械工程研究碩士論文, 2012.
[19] D. C. Sweeney, “Preliminary Inverstigation of hydraulic lock”, Engineering, Vol.172, pp.513, 1951,
[20] J. Manham and D. C. Sweeney, “An Investigation of hydraulic lock”, institution of mechanical engineer, London, 1955.
[21] 陳祉翔, “油壓伺服閥以音圈線性馬達驅動之設計與控制”, 國立成功大學工程研究所碩士論文, 2015.
[22] Gene F. Franklin, J. David Powell. Abbas Emami-Naeini, “Hydraulic Control Systems”, New York: John Wiley, 1967.
[23] C.T. Chen, “Linear System Theory and Design”, Oxford University Press, 1999.
[24]H. Olsson, K.J.Astrom, C. Canudas de Wit, M Gafvert andP. Lischinsky, “Friction Model and Friction Compensation”, Europe Journal of Control, (1998)4:176~195.
校內:2022-06-30公開