簡易檢索 / 詳目顯示

研究生: 倪啟軒
Ni, Chi-Hsuan
論文名稱: 應用唾液生物指標評估職業暴露二甲基 甲醯胺之生物偵測與動力學特性
Using salivary biomarkers in the exploration of biological monitoring and kinetic characteristics of occupational exposure to N,N-dimethylformamide
指導教授: 張火炎
Chang, Ho-Yuan
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 90
中文關鍵詞: 二甲基甲醯胺唾液累積肝功能基因多型性動力學
外文關鍵詞: saliva, accumulation, kinetic, liver function, genetic polymorphism, N-dimethylformamide, N, N-methylformamide, N-acetyl-S-(N-methylcarbamoyl)cysteine
相關次數: 點閱:152下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前二甲基甲醯胺(DMF)職業暴露所建議的生物指標為尿中(U-)的代謝物N-methylformamide(NMF)及N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC),而尿中的DMF原形物與空氣中的DMF亦有良好的相關性。唾液樣本有收集方便,隱私困擾較低並可藉由量測唾液中化學物質的含量來推估血液中的含量等優點。因此本研究目的為:(1) 藉由評估唾液生物指標(S-)與空氣DMF暴露濃度和尿中DMF生物指標之相關性,探討唾液DMF、NMF與AMCC濃度值作為DMF職業暴露生物指標之可行性;(2) 探討在連續五個工作天之暴露下,DMF生物指標是否有累積之情形;(3) 探討唾液生物指標和肝功能指數之相關性;(4) 探討唾液生物指標之動力學特性。本研究選取台灣中部某合成皮工廠,藉由兩階段現場之測定方式,第一階段針對所有可能暴露DMF之74位員工進行採樣,進行一天空氣、尿液、唾液樣本、健檢資料之收集及問卷調查,再從中選出20位高暴露勞工進行第二階段採樣。第二階段分為兩部分:(1) 探討累積之部分:進行一週連續工作五天 ( W1~W5 )包括空氣之DMF環境測定與收集包括五天上班前(-pre)後(-post)之尿液及唾液樣本。(2) 探討動力學之部分:兩個工作天 ( W5、W6 ) 之空氣樣本及兩天之上班前後之尿液及唾液樣本,並且收集最後一個工作天( W6 )下班後連續36小時之尿液及唾液樣本。本研究結果發現經由ANOVA及correlation matrix統計分析,連續五個工作天之空氣中DMF濃度在不同人與在不同工作天皆相當穩定。而利用簡單線性廻歸模式及複迴歸模式發現尿中的NMF、AMCC及唾液中的NMF會隨著工作天數增加而顯著有上升的趨勢(p<0.05),而推論DMF職業暴露勞工連續一週工作後,體內DMF生物指標會有累積。在S-DMF方面,空氣DMF暴露濃度和S-DMF相關性並不一致,並不建議作為DMF暴露濃度之生物指標;而空氣DMF暴露濃度和S-NMF相關性良好,但空氣DMF暴露濃度和S-AMCC相關性較差,所以S-NMF可以作為當天空氣DMF暴露濃度之良好指標,但S-AMCC似乎不適合做為當天空氣DMF暴露濃度之良好指標。而以一階動力學(first-order kinetics)推估唾液中NMF之平均半衰期( 16.5 h )明顯較尿液的NMF( 9.1 h )為長,顯示S-NMF是屬於較長半衰期的生物指標,也說明S-NMF-pre和前一天的空氣DMF濃度有良好的相關性及S-NMF-pre會隨著工作天數增加而有逐日累積的原因。另外可以發現S-NMF-post除了和外在暴露有很好的相關性外,且和U-NMF-post有良好的相關性,所以可以判斷S-NMF-post適合作為職業暴露二甲基甲醯胺的生物指標。另外以卡方檢定及多變項邏輯式迴歸模式探討肝功能異常是否和生物指標之代謝比值( Metabolic index, MI )高低不同有相關。結果發現GPT異常與否和唾液中NMF代謝比值高低有統計顯著相關,此代謝比值亦會受CYP2E1之基因多型性( Dra1 )影響:Dra1呈現wild-type homozygous者體內S-NMF濃度值顯著高於mutant type者,即wild-type homozygous的代謝活性較高,使得產生較多之S-NMF。另外發現肝功能不正常者,其下班後連續36小時之S-NMF之半衰期、滯留時間(Mean residence time, MRT)較長,體內之總暴露負荷劑量( Total body burden of exposure )皆較高,所以唾液中NMF之總暴露劑量與肝功能不正常息息相關。本研究結論及建議為 (1) S-NMF可作為當天及前一天DMF暴露之生物指標,且與U-NMF有良好之相關性。在往後的DMF職業暴露之研究,可以建議以唾液中NMF作為另一項DMF職業暴露之生物指標。另一方面,由於AMCC是屬於conjugated form,所以不容易通過血管內質網細胞膜,導致唾液中AMCC的含量較低甚至低於偵測下限,因此並不適合作為DMF職業暴露的生物指標。(2) 証實DMF工作在連續五個工作天暴露下, DMF體內之內在劑量會產生累積之情形,因此DMF暴露員工應密切觀察所造成可能之健康效應。(3) 鑑於唾液中有害物可反應血液中化學物質濃度值,唾液中NMF產生濃度較高者可能會導致肝危害之情形,因此本研究推論S-NMF亦可以作為評估DMF所造成之健康效應。 (4) 勞工之CYP2E1之基因型屬Dra1為wild-type homozygous者,可能應避免長時間暴露於高濃度DMF,減少可能之健康危害。(5) 在S-NMF之動力學方面,整體而言,終止暴露後之S-NMF動力學行為較符合first-order kinetic。

    The current recommended biological exposure indices of N,N-dimethylformamide (DMF) exposure are urinary N-methylformamide (NMF) and N-acetyl-S- (N-methylcarbamoyl) cysteine (AMCC). Several studies showed excellent linear relationship between air DMF concentrations and urinary DMF. Due to the privacy concern and uncontrollable timing issue in urine sample collection, there is a need to seek for other biological specimen like saliva to accommodate the needs of biological monitoring in field study. The purposes of study are: (1) To explore the relations of the salivary biomarkers to airborne DMF concentrations and to explore the feasibility of salivary biomarkers to reflect DMF exposure. (2) To determine whether there is an accumulation of DMF biomarkers throughout five consecutive workdays. (3) To explore the relations of the liver function indices to salivary biomarker levels. (4) To explore kinetic characteristics in salivary biomarkers. Seventy-four subjects occupationally exposed to DMF have been monitored for their airborne DMF exposure and urinary and salivary biomarker levels in the first stage. Twenty subjects were further enrolled in the second stage based on the environmental monitoring results from the first stage. Airborne DMF monitoring throughout their whole work shift and biological monitoring of the concentrations of NMF and AMCC both in urine and saliva were conducted on the individual basis for five consecutive days. Moreover, 36-hour series of samples of saliva and urine were collected since the termination of the exposure on the last weekday to determine their kinetic parameters. We found that airborne DMF concentrations were constant within individual and stable across the working weekdays. Accumulation could take place in U-NMF, U-AMCC and S-NMF throughout a five-day consecutive workdays’ exposure. S-NMF at post shift revealed satisfactory associations with both airborne DMF exposure on the same day and the preceding day by simple linear regression. It could be due to the half-life of S-NMF was estimated as 16.5 hrs, longer than that of U-NMF of 9.1 hrs. DMF and AMCC in salivary, however, was found poor associations with either airborne DMF or any biomarkers in urine. S-NMF was not only a satisfactory predictor of airborne DMF but also revealed satisfactory association with U-NMF. Therefore, S-NMF could be an alternative predictor of airborne DMF exposure. The metabolic index of salivary NMF to DMF was significantly associated with liver function parameters examined by the tests of Chi-square and multiple logistic regression. The metabolic index revealed a significant association with genotype of CYP2E1. The workers with higher abnormality in liver function index were found with higher metabolic index (MI). The estimates of half-life, area under curve (AUC), and mean residence time (MRT) in abnormal case were larger than those in normal groups, possibly, resulting from the increase total body burden of DMF exposure and sequently causing liver abnormality. We concluded that (1) NMF in saliva (S-NMF) could be considered as an appropriate exposure biomarker of daily and proceeding-day exposure to DMF. In view of the convenience in sample collection, satisfactory association with DMF exposure, salivary NMF could be considered as an ideal indicator for both biomarkers in exposure. S-AMCC is not an ideal biomarker of DMF exposure. Possibly owing to that AMCC is a conjugated form and hardly penetrate through blood vessel endothelium membrane. (2) Accumulation could be observed in U-NMF, U-AMCC and S-NMF for those workers occupationally exposed to DMF during five-day cycles. All DMF-exposed employees should be intensively monitored on their health effects. (3) AMCC could be a metabolic detoxicification product and NMF greater toxicity than DMF. NMF could be more related to the hepatotoxicity than external exposure levels of DMF. Salivary NMF could be considered as an ideal indicator for health effect. (4) DMF exposed employees with wild-type of Dra1 were recommended avoiding working at prolonged DMF exposure and higher DMF levels. (5) First-order kinetic pattern was conducted for excretive S-NMF.

    目錄 8 表目錄 11 圖目錄 12 附錄 13 第一章 序論 14 1.1 研究背景 14 1.1.1 PU合成皮產業概況 14 1.1.2 PU合成皮製程介紹 14 1.1.3 合成皮業之職業危害 15 1.2 研究動機 15 1.3 研究意義與重要性 17 1.4 研究目的 19 1.5 研究架構 19 第二章 文獻探討 20 2.1 二甲基甲醯胺 ( DMF ) 之物理化學特性 20 2.2 DMF之代謝途徑 20 2.3 DMF之生物偵測 21 2.4 唾液生物指標之應用 21 2.5 DMF代謝物累積性之探討 23 2.6 DMF肝危害之探討 24 2.7 動力學之探討 25 第三章 材料與方法 26 3.1 使用材料及儀器設備 26 3.1.1 採樣材料 26 3.1.2 分析儀器 26 3.1.3 使用藥品 26 3.1.4 其他實驗器材 27 3.2 研究對象之選取 27 3.3 環境偵測-空氣DMF暴露濃度 28 3.3.1 空氣樣本之前處理 28 3.3.2 空氣樣本之分析條件 29 3.4 生物偵測 29 3.4.1 尿液樣本 29 3.4.1.1 尿液樣本之收集 29 3.4.1.2 尿中DMF與NMF之分析方法 29 3.4.1.3 尿中DMF與NMF分析之前處理 30 3.4.1.4 尿中DMF與NMF分析之儀器條件 30 3.4.1.5 尿中AMCC之分析方法 30 3.4.1.6 尿中AMCC之分析方法之前處理 30 3.4.1.7 尿中AMCC分析之儀器條件 30 3.4.2 唾液樣本 31 3.4.2.1 唾液樣本之收集 31 3.4.2.2 唾液中DMF與NMF之分析方法 31 3.4.2.3 唾液中DMF與NMF分析之前處理 31 3.4.2.4 唾液中DMF與NMF分析之儀器條件 32 3.4.2.5 唾液中AMCC之分析方法 32 3.4.2.6 唾液中AMCC分析之前處理 32 3.4.2.7 唾液中AMCC分析之儀器條件 32 3.5 實驗室分析之品保品管控制 33 3.5.1 空氣樣本之品保、保管與偵測下限 33 3.5.2 尿液樣本之品保、保管與偵測下限 33 3.5.3 唾液樣本之品保、保管與偵測下限 33 3.6 動力學 34 3.7 資料分析 35 第四章 結果與討論 36 4.1 勞工基本人口學資料 36 4.2 DMF環境偵測 36 4.3 連續五日之生物偵測 36 4.3.1 探討累積之部分 36 4.3.2 唾液生物指標之可行性探討 38 4.4 第一階段及第二階段連續兩日之生物偵測 41 4.4.1 唾液生物指標與空氣DMF暴露之探討 41 4.4.2 唾液生物指標與肝功能指標之相關性探討 41 4.4.3 DMF職業暴露之唾液生物指標動力學探討 44 第五章 結論與建議 46 參考文獻 48

    American Conference of Governmental Industrial Hygienists (ACGIH), USA, 2002;“Threshold limit values for chemical substances and physical agents and biological exposure indices,”.
    Angerer J, Goen T. Kramer A, Kafferlein HU. N-methylcarbamoyl adducts at the N-terminal valine of globin in workers exposed to N,N-dimethylformamide, Arch Toxicol 1998; 72: 309-313.
    Baetz AL, Hubbert WT, Graham CK. Developmental changes of tissue enzyme patterns in the bovine fetus with gestational age. Biol Neonate 1975; 26(3-4):232-240.
    Brindley C, Gescher A, Ross D. Studies of the metabolism of dimethylformamide in mice. Chem-Biol Interact 1983; 45(3): 387-392.
    Chang HY, Shih TS, Cheng CC, Tsai CY, Lai JS, Wang VS. The effects of co-exposure to methyl ethyl ketone (MEK) on the biological monitoring of occupational exposure to N,N-dimethylformamide (DMF). Int Arch Environ Occup Health 2003; 76: 121-128.
    Chang HY, Shih TS, Guo YL, Tsai CY, Hsu PC. Sperm Function in Workers Exposed to N,N-Dimethylformamide in Synthetic Leather Industry. Fertil Steril 2004a; 81(6): 1589-1594.
    Chang HY, Tsai CY, Lin YQ, Shih TS, Lin YC. Urinary biomarkers of occupational N,N-dimethylformamide (DMF) exposure attributed to dermal exposure. J Exp Anal Environ Epidemiol 2004b; 14(3): 214-221.
    Chang HY, Tsai CY, Lin YQ CC, Shih TS, Lin WC. Total body burden arising from a week’s repeated dermal exposure to N,N-dimethylformamide. Occup Environ Med 2005a; 62(3): 151-156.
    Chang HY, Yun TD, Yu YC, Shih TS, Lin MS, Kuo HW, Kuo MC. The effects of simultaneous exposure to methyl ethyl ketone and toluene on urinary biomarkers of occupational N,N-dimethylformamide exposure. Toxicol Lett 2005b; 155(3):385-395.
    Chieli E, Saviozzi M, et al. Hepatotoxicity and P-4502E1-dependent metabolic oxidation of N,N-dimethylformamide in rats and mice. Arch Toxicol1995; 69(3): 165-170.
    De Boever J, Kohen F, Vanderkerckhove D. Direct solid-phase chemiluminescence immunoassay progesterone. Clin Chem 1986; 32: 763-767.
    Ducatman AM, Conwill DE et al. Germ cell tumors of the testicle among aircraft repairmen. J Urology 1986; 136(4): 834-836.
    Evans JJ, Wilkinson AR, Aickin DR. Salivary estriol concentration during normal pregnancies, and a comparison with plasma estriol. Clin Chem 1984; 30(1): 120-121.
    Fail PA, George JD, Grizzle TB, Heindel JJ. Formamide and dimethylformamide: reproductive assessment by continuous breeding in mice. Reprod Toxicol 1998; 12(3): 317-32.
    Fiorito A, Larese F, et al. Liver function alterations in synthetic leather workers exposed to dimethylformamide. Am J Ind Med 1997; 32(3): 255-260.
    Gescher A. Metabolism of N,N-dimethylformamide: key to the understanding of its toxicity. Chem Res Toxicol 1993; 6(3): 245-251.
    Gorodetzky CW, Kullberg MP. Validity of screening methods for drugs of abuse in biological fluids. Heroin in plasma and saliva. Clin Pharmacol Ther 1974; 15: 579-587.
    Hanasono GK, Fuller RW, et al. Studies on the effects on N,N'-dimethylformamide on ethanol disposition and on monoamine oxidase activity in rats. Toxicol Appl Pharm 1977; 39(3): 461-472.
    Idiz N, Guvendik G, Bosgelmez II, Soylemezoglu T, Dogan YB, Ilhan I. Serum sialic acid and gamma-glutamyltransferase levels in alcohol-dependent individuals. Forensic Sci Int 2004; 146 Suppl: S67-S70.
    Imbriani M, Maestri L, et al. Urinary determination of N-acetyl- S-( N-methylcarbamoyl)cysteine and N-methylformamide in workers exposed to N, N-dimethylformamide. Int Arch Occ Env Hea 2002; 75(7): 445-452.
    Johanson G, Boman A. Percutaneous absorption of 2-butoxy ethanol vapor in human subjects. Br J Ind Med 1991; 48: 788–792.
    Kafferlein HU, and Angerer J. Simultaneous determination of two human urinary metabolites of N,N-dimethylformamide using gas chromatography-thermionic sensitive detection with mass spectrometric confirmation. J Chromatog B 1999; 734(2): 285-298.
    Kafferlein HU, Goen T, et al. Biological monitoring of workers exposed to N,N-dimethylformamide in the synthetic fibre industry. Int Arch Occ Env Hea 2000; 73(2): 113-120.
    Kato S, Shields PG., Caporaso NE, Hoover RN, Trump BF, Sugimura H, Weston A, and Harris CC. Cytochrome P450IIE1 genetic polymorphisms, racial variation, and lung cancer risk. Cancer Res 1992; 52: 6712-6715.
    Kawai T, Yasugi T, et al. Occupational dimethylformamide exposure. 2. Monomethylformamide excretion in urine after occupational dimethylformamide exposure. Int Arch Occ Env Hea 1992; 63(7): 455-460.
    Kennedy GL, Sherman H. Acute and subchronic toxicity of dimethylformamide and dimethylacetamide following various routes of administration. Drug Chem Toxicol 1986; 9(2): 147-170.
    Kestell P, Gill M H, Threadgill MD, Gescher A, Howarth OW, Curzon EH. Identification by proton NMR of N-(hydroxymethyl)-N-methylformamide as the major urinary metabolite of N,N-dimethylformamide in mice. Life Sci 1986; 38(8): 719-724.
    Kestell P, Threadgill MD, et al. An investigation of the relationship between the hepatotoxicity and the metabolism of N-alkylformamides. J Pharm Exp Ther 1987; 240(1): 265-270.
    Kimmerle G, Eben A. Metabolism studies of N,N-dimethylformamide. I. Studies in rats and dogs. Int Arch Arbeitsmed 1975a; 34: 109-126.
    Kimmerle G, Eben A. Metabolism studies of N,N-dimethylformamide. II. Studies in persons. Int Arch Arbeitsmed 1975b; 34:127-136.
    Lareo AC and Perbellini L. Biological monitoring of workers exposed to N, N-dimethylfomamide. I. Methods of analysis. Int Arch Occ Env Hea 1995; 67(1): 41-46.
    Lauwerys RR, Kivits A, et al. Biological surveillance of workers exposed to dimethylformamide and the influence of skin protection on its percutaneous absorption. Int Arch Occ Env Hea 1980; 45(3): 189-203.
    Lawrence JC Jr, Fadden P, Haystead TA, Lin TA. PHAS proteins as mediators of the actions of insulin, growth factors and cAMP on protein synthesis and cell proliferation. Adv Enz Regulat 1997; 37: 239-267.
    Luo JC, Kuo HW, Cheng TJ, Chang MJ. Abnormal liver function associated with occupational exposure to dimethylformamide and hepatitis B virus. J Occup Environ Med 2001; 43(5): 474-482.
    Lyle WH, Spence TW, et al. Dimethylformamide and alcohol intolerance. Brit J Ind Med 1979; 36(1): 63-66.
    Maher JJ. Exploring alcohol's effects on liver function. Alcohol Hea Res World 1997; 21(1): 5-12.
    Mandel ID. The diagnostic uses of saliva. J Oral Pathol Med 1990; 19(3): 119-125.
    Mraz J and Nohova H. Percutaneous absorption of N,N-dimethylformamide in humans. Int Arch Occ Env Hea 1992a; 64(2): 79-83.
    Mraz J, Nohova H. Absorption, metabolism and elimination of N,N-dimethylformamide in humans. Int Arch Occ Env Hea 1992b; 64(2): 85-92.
    Mraz J, Galova E, Nohova H, Bouskova S. N-methylcarbamoyl adduct with N-terminal valine of globin:a view biomarker of exposure to N, N-dimethylformamide(DMF)in human. Poster presentation at the 4th International Symposium on Biological Monitoring in Occupational and Environmental Health, 1998.
    Ng DP, Koh D, Choo SG, Ng V, Fu Q. Effect of storage conditions on the extraction of PCR-quality genomic DNA from saliva. Clin Chim Acta 2004; 343(1-2): 191-194.
    Nomiyama T, Nakashima H, et al. N,N-dimethylformamide: significance of dermal absorption and adjustment method for urinary N-methylformamide concentration as a biological exposure item. Int Arch Occ Env Hea 2001a; 74(3): 224-228.
    Nomiyama T, Nakashima H, Sano Y, Chen LL, Tanaka S, Miyauchi H. Yamauchi T, Sakurai H, and Omae K. Does the polymorphism of cytochrome P-450 2E1 affect the metabolism of N,N-dimethylformamide? Comparison of the half-lives of urinary N-methylformamide. Arch Toxicol 2001b; 74:755-759.
    Nomura F, Itoga S, Uchimoto T, Tomonaga T, Nezu M, Shimada H, Ochiai T. Transcriptional activity of the tandem repeat polymorphism in the 5'-flanking region of the human CYP2E1 gene. Alcohol Clin Exp Res 2003; 27(8 Suppl): 42S-46S.
    Pan AYS. Lead levels in saliva and in blood. J Toxicol Env Hea 1981;7:273–80.
    Perbellini L, Maestri L, et al. Analysis of urinary N-acetyl-S-(N-methylcarbamoyl)cysteine, the mercapturic acid derived from N,N-dimethylformamide. J Chromatogr B 2001; 759(2): 349-354.
    Poet TS, Weitz KK, Gies RA, et al. PBPK modeling of the percutaneous absorption of perchloroethylene from a soil matrix in rats and humans. Toxicol Sci 2002; 671: 17–31.
    Potter HP. Dimethylformamide-induced abdominal pain and liver injury. Arch Env Hea1973; 27(5): 340-341.
    Prokhorov AV, De Moor C, Pallonen UT, Hudmon KS, Koehly L, Hu S. Validation of the modified Fagerstrom tolerance questionnaire with salivary continine among adolescents. Addict Behav 2000; 25: 429-433.
    Riad-Fahmy D, Read GF, Walker RF, Griffiths K. Steroids in saliva for assessing endocrine function. Endocr Rev 1982; 3(4): 367-395.
    Roure MB, Lambert AM, Cour C, Bonnet P, Saillenfait AM. Hepatotoxicity of N, N-dimethylformamide in rats following intraperitoneal or inhalation routes of administration. J Appl Toxicol 1996; 16(3): 265-267.
    Scailteur V, de Hoffmann E, Buchet JP, Lauwerys R. Study on in vivo and in vitro metabolism of dimethylformamide in male and female rats. Toxicology 1984; 29(3): 221-234.
    Schottek W. Studies on toxicity of dimethylformamide in repeated action in animal experiments. Acta Biologica et Medica Germanica 1970; 25(2): 359-361.
    SRC. KowWin Database. 3.10. 2002.
    Thrall KD, Weitz KK, Woodstock AD. Use of real-time breath analysis and physiologically based pharmacokinetic modeling to evaluate dermal absorption of aqueous toluene in human volunteers. Toxicol Sci 2002; 682: 280–287.
    Vining RF, Mcginley RA. Symons RG. Homones in saliva:mode of entry and consequent implications for clinical interpretation. Clin Chem 1983a; 29: 1752-1756.
    Vining RF, Mcginley R, Rice BV. Saliva estriol measurement:an alternative to the assay of serum unconjugated estriol in assessing fetoplacental function. J. Clin Endocrinol Metab 1983b; 56: 454-460.
    Vining RF, McGinley RA, Maksvytis JJ, Ho KY. Salivary cortisol:a better measure of adrenal cortical function than serum cortisol. Ann Clin Biochem 1983c; 20: 329-335.
    Vining RF, McGinley RA. Hormones in saliva. Crit Rev Cl Lab Sci 1985; 138: 365-371
    Walter D, Jochim C, Knecht U. Toxicolokinetic study on N,N-dimethylformamide for the re-evaluation of the Biological Tolerance value (BAT) in Germany, In: Hallier E. Documentation from the 38th annual conference of the German Society of Occupational and Environmental Medicine, Wiesbaden 2000.
    Wang JD, Lai MY, Chen JS, Lin JM, Chiang JR, Shiau SJ, Chang WS. Dimethylformamide-induced liver damage among synthetic leather workers. Arch Env Hea 1991; 46: 161-166.
    Willers S, Axmon A, Feyerabend C, Nielsen J, Skarping G, Skerfving S. Assessment of environmental tobacco smoke exposure in children with asthmatic symptoms by questionnaire and cotinine concentrations in plasma, saliva, and urine. J Clin Epidemiol 2000; 53(7):715-721.
    Worthman CM, Stallings JF, Hofman LF. Sensitive salivary estradiol assay for monitoring ovarian function. Clin Chem 1990;36:1769-1773.
    Wrbitzky R. Liver function in workers exposed to N,N-dimethylformamide during the production of synthetic textiles. Int Arch Occ Env Hea 1999; 72:19-25.
    Yang JS, Kim EA, Lee MY, Park IJ, Kang SK. Biological monitoring of occupational exposure to N,N-dimethylformamide-the effects of co-exposure to toluene or dermal exposure. Int Arch Occ Env Hea 2000; 73(7): 463-470.
    Yamada R, Wakabayashi Y, Iwashima A, Hasegawa T. In vivo inhibition of aspartate aminotransferase in mice by L-hydrazinosuccinate. Biochim Biophys Acta 1987; 911(3): 372-375.
    行政院勞工委員會勞工安全衛生研究所,有機溶劑中毒預防規則,第三條第一款,民國92年
    財團法人工業技術研究院工業安全衛生技術發展中心,物質安全資料表,序號260,民國89年
    林育群,建立唾液中二甲基甲醯胺職業暴露之生物指標分析方法,成功大學環境醫學研究碩士論文,2003
    雲遠德,二甲基甲醯胺、丁酮暨甲苯混合暴露之職業環境對生物偵測之影響,成功大學環境醫學研究碩士論文,2004

    下載圖示 校內:2006-07-05公開
    校外:2006-07-05公開
    QR CODE