簡易檢索 / 詳目顯示

研究生: 許閔勝
SYU, Min-Shen
論文名稱: 具對稱系統矩陣之局部最小二乘無網格法在特徵值問題上之應用
The Meshless Local Least Square Method with Symmetric System Matrix for Solving Eigenvalue Problems
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 59
中文關鍵詞: 局部最小二乘法無網格法特徵值問題
外文關鍵詞: Local least-square, Meshless, eigenvalue problems
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用無網格法(Meshless method)中的具對稱系統矩陣之局部最小二乘無網格法來分析探討邊界值與特徵值問題。本法主要使用局部最小二乘法(Local least-square method, LLS)建立局部聯立方程組並使其對稱化,再加總為全域聯立方程組,本文稱其為對稱化局部最小二乘法(Symmetrize local least-square method, SLLS)
      本文中數值範例所得結果和解析解進行比較,在邊界值問題的收斂性與精度都明顯較舊有的數值方法更令人滿意而在特徵值問題上大大減少許多雜亂與錯誤的特徵值訊息,因此驗證了具對稱微分矩陣之局部最小二乘無網格法在邊界值與特徵值問題上的可行性。

    In this paper we introduce the meshless method of local least-square with symmetric system matrix to solve the boundary value problem and eigenvalue problems. We use the local least-square method(LLS) to establish a system of equations and improve it to be symmetrical,then combine the local system of equations to a global system of equation. In this paper we named the new method Symmetrize local least-square method, SLLS .

      In the numerical example we comparing the data analyzed in this article with the exact solution, It shows that SLLS have good convergency and accuracy to be used on the boundary value and eigenvalue problems.

    摘 要…………………………………………………………………………Ⅰ 誌 謝…………………………………………………………………………III 目 錄…………………………………………………………………………IV 表目錄…………………………………………………………………………VI 圖目錄…………………………………………………………………………VII 第一章 緒論……………………………………………………………………1 1.1 前言………………………………………………………………………1 1.2 文獻回顧…………………………………………………………………2 1.3 本文架構…………………………………………………………………4 第二章 理論基礎………………………………………………………………6 2.1 局部最小二乘法…………………………………………………………6 2.2 微分運算矩陣之對稱化…………………………………………………8 2.3 鄰近點與加權函數以及影響半徑的選取………………………………11 第三章 邊界值問題與特徵值問題……………………………………………13 3.1 二階常係數微分方程式…………………………………………………13 3.2 Legendre’s Equation 與 Legendre Polynomials …………15 3.3 Bessel’s Equation 與 Bessel Function , ………………16 3.4 特徵值問題求解…………………………………………………………17 第四章 數值算例………………………………………………………………20 4.1 常微分方程式邊界值問題………………………………………………20 4.2 對流方程式(Convection-Diffusion Equation)邊界值問題…22 4.3 Legendre’s Equation邊界值問題………………………………25 4.4 Bessel’s Equation邊界值問題……………………………………27 4.5 一般特徵值問題………………………………………………………29 4.6 Legendre’s Equation特徵值問題…………………………………32 4.7 Bessel’s Equation特徵值問題……………………………………34 第五章 結論……………………………………………………………………36 參考文獻 ………………………………………………………………………38 自 述……………………………………………………………………………59

    [1] L.B Lucy : A numerical approach to the testing of the fission hypothesis,
    The J. Astron.8(12),1013-1024(1977).
    (Springer Verlag), 248(1990)
    [2] B. Nayroles, G. Touzot, and P. Villon: Generalizing the finite element
    Method diffuse approximation and diffuse elements, Comput. Mech. 10,307-318(1992).
    [3] T. Belytschko, L. Gu, and Y. Y. Lu : Fracture and crack growth by element
    -free Galerkin methods, Model. Somul. Mater. Sci. Engrg. 2,519-534(1994).
    [4] 盛若盤,"元素釋放法積分法則與權函數之改良",近代工程計算論
    壇(2000)論文集,國立中央大學土木系,2000.
    [5] W. K. Liu, S. Jun, and Y. F. Zhang : Reproducing kernel particle methods,
    Int. J. Number. Methods Engrg.20, 1081-1106(1995).
    [6] J. S. Chen, C. T. Wu, and W. K. Liu : Reproducing Kernel Particle
    Methods for Large Deformation Analysis of non-linear structure, Computer
    Methods in Applied Mechanics And Engineering. 139,195-227.(1996).
    [7] S. LI, W. Hao, and W. K. Liu : Numercial simulation of large deformation
    Of thin shell structures using meshless methods. Computation Mechanics
    25,102-116(2000)
    [8] E. Onate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor, and C. Sacco :
    A Stabilized finite point method for analysis of fluid mechanics problems,
    Computer Methods in Applied Mechanics & Engineering,133,315-346(1996).
    [9] T. Zhu, and S. N. Atluri : A Meshless Numberical Method Based on the
    Local Boundary Integral Equation (LBIE) to Solve Linear and Non-linear
    Boundary Value Problems, Engineering Analysis with Boundary Elements,
    23,357-389.(1999)
    [10] T.Belytschko, Y. Kronguauz, D. Orang, and N. Fleming : Meshless
    Method : An Overview and Recent Developments, Computer Methods in
    Applied Mechanics & Engineering, 139,3-47(1996).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE