簡易檢索 / 詳目顯示

研究生: 周原佑
Chou, Yuen-You
論文名稱: 利用內聚力模型分析雙材料界面裂紋成長
Analysis of Bimaterial Interface Crack Growth Using Cohesive Zone Model
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: 界面剝離內聚力模型有限元素分析
外文關鍵詞: interface, debonding, cohesive zone model, finite element analysis
相關次數: 點閱:91下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多產品為了功能性或成本上之需求,須將各種不同材料組合在一起。當其結構受到機械應力或熱應力時,易造成材料界面發生剝離(debounding)的現象,而使得相異材料的界面失效。一般為了描述界面裂紋的成長,採用大量的實驗數據來建立經驗公式模型,耗費大量的時間與成本。為了解決這個問題,本論文採用有限元素法配合內聚力模型(cohesive zone model, CZM)來描述界面裂紋的成長。
    本研究是利用雙線性型式之內聚力模型配合有限元素方法,模擬相異材料界面受到機械應力或熱應力作用時,界面之張開量以判斷是否有裂紋生成;並模擬相異材料受到週期性加卸載時,界面裂紋的成長速率。本研究利用耦合模型減少模擬所需元素數量,並且以較細密之網格分析楔形角處或裂紋尖端,以有效率的分析雙材料之界面。
    根據研究結果發現,全域-局部耦合有限元素模型在受到單調機械或熱應力作用時,其結果均與單一有限元素模型結果吻合,且當受週期性負載時,結果仍與單一模型近似。因此可利用耦合模型取代單一模型分析複雜之結構,以減少分析之時間。

    From the perspectives of capabilities and manufacturing costs, a lot of structures and assembled using distinct materials. Under either thermal or mechanical stresses during fabrication or in-use conditions, debonding is likely to occur on the interface of materials. The conventional approach for studying the interface crack growth and related failure is by suing experimental tests to obtain empirical estimations. The required cost is high and the time duration is lengthy. To overcome this difficulty, the cohesive zone model (CZM) approach may be used to study the interface crack problem.
    In this study, finite element analysis using a bilinear CZM is used to simulate interface debonding under either thermal or mechanical loads. The model is applied to study the interface crack formation and growth from bimaterial wedge corner under bending loads. The effect of corner wedge angle on crack growth rate is also investigated. The modeling results agree to those typical fracture mechanics approach.
    In addition, as an interface to reduce the complexity of finite element model, global-and-local finite element approaches were also examined. The global-and local model with coupled displacement condition is shown to the same results as that obtained from the single model.

    目錄 摘要.......................................................I 英文摘要...................................................II 誌謝.....................................................III 目錄......................................................IV 表目錄...................................................VII 圖目錄......................................................VIII 符號說明..................................................XII 第一章 緒論.................................................1 1.1 研究背景...............................................1 1.2 動機與方法.............................................2 1.3 文獻回顧...............................................2 1.4 研究目的...............................................7 1.5 本文架構...............................................7 第二章 理論基礎.............................................9 2.1 內聚力模型概論.........................................9 2.2 內聚力模型於週期性加卸載反應............................11 2.3 雙線性內聚力模型.......................................13 2.3.1 模式一之內聚力模型....................................13 2.3.2 模式二之內聚力模型....................................16 2.3.3 混合模式之內聚力模型..................................19 第三章 界面內聚力有限元素模型................................23 3.1 有限元素內聚力模型及驗證................................23 3.1.1 混合模式雙線性內聚力模型之正向參數驗證..................25 3.1.2 混合模式雙線性內聚力模型之剪切向參數驗證.................28 3.1.3 四點彎矩與實驗之驗證..................................30 3.2 全域-局部有限元素模型..................................38 3.3 全域-局部耦合有限元素模型...............................41 3.4 有限元素模型之比較.....................................43 第四章 結果與討論...........................................45 4.1 雙材料界面楔形角對角落裂紋之影響.........................45 4.2 四點彎矩於週期性負載下雙材料界面之影響...................54 4.3 雙懸臂樑有限元素模擬...................................64 4.4 熱應力作用下界面剝離模擬................................72 第五章 結論與未來研究方向....................................82 5.1 結論.................................................82 5.2 未來研究方向..........................................82 參考文獻...................................................84 附錄 ANSYS程式............................................87

    參考文獻
    1.Barenblatt, G. I., "The formation of equilibrium cracks during brittle fracture. Generak ideas and hypothesis. Axially-symmetric cracks," Journal of Applied Mathematics and Mechanics, Vol. 23, pp. 622-636 (1959)
    2.Dugdale, D. S., "Yielding of steels containing slits," Journal of the mechanics and Physics of Solids, Vol. 8, pp. 100-104 (1960)
    3.Needleman, A., "A continuum model for void nucleation by inclusion debonding," Journal of Applied Mechanics, Vol. 54, pp. 525-531 (1987)
    4.Rice, J. R., and Wang, J.-S., "Embrittlement of interfaces by solute segregation," Materials Science and Engineering: A, Vol. 107, pp. 23-40 (1989)
    5.Needleman, A., "An analysis of tensile decohesion along an interface," Journal of the Mechanics and Physics of Solids, Vol. 38, pp. 289-324 (1990)
    6.Needleman, A., "An analysis of decohesion along an imperfect interface," International Journal of Fracture, Vol. 42, pp. 21-40 (1990)
    7.Tvergaard, V., and Hutchinsin, J. W., "The relation between crack growth resistance and fracture process parameters in elastic-plastic," Journal of the Mechanics and Physics of Solids, Vol. 40, pp. 1377-1397 (1992)
    8.Xu, X. P., and Needleman, A., "Void nucleation by inclusion debonding in a crystal matrix," Modelling and Simulation in Materials Science and Engineering, Vol. 1, pp. 111–132 (1993)
    9.de-Andres, A., Perez, J. L., and Ortiz, M., "Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading," International Journal of Solids and Structures, Vol. 36, pp. 2231-2258 (1999)
    10.Geubelle, P. H., and Baylor, J., "Impact-induced delamination of laminated composites: a 2D simulation," Composites Part B: Engineering, Vol. 29, pp. 589–602 (1998)
    11.Liechti, K. M., and Wu, J-D., "Mixed-mode, time-dependent rubber metal debonding," Journal of Mechanics and Physics of Solids, Vol. 49, pp. 1039-1072 (2001)
    12.Chandra, N., Li, H., Shet, C., and Ghonem, H., "Some issues in the application of cohesive zone models for metal–ceramic interfaces," International Journal of Solids and Structures, Vol. 39, pp. 2827-2855 (2002)
    13.Towashiraporn, P., Subbarayan, G., and Desai, C. S., "A hybrid model for computationally efficient fatigue fracture simulations at microelectronic assembly interfaces," International Journal of Solids and Structures, Vol. 42, pp. 4468-4483 (2005)
    14.Roy, S., Wang, Y., Park, S., and Liechti, K. M., "Cohesive layer modeling of time-dependent debond growth in aggressive environments," Journal of Engineering Materials and Technology, Vol. 128, pp. 11-17 (2006)
    15.Gao, X., Faleskkog, J., Shin, C. F., and Dodds Jr, R. H., "Ductile tearing in part-through cracks: experiments and cell-model predictions," Engineer Fracture Mechanics, Vol. 59, pp. 761-777 (1998)
    16.Mohammed, I., "Crack Nucleation from Bimaterial Corners,", Ph.D. dissertation, University of Texas at Austin, Engineering Mechanics Research Laboratory Report EMRL (1998)
    17.Alfano, G., and Crisfield, M. A., "Finite Element Interface Models for the Delamination Anaylsis of Laminated Composites: Mechanical and Computational Issues," International Journal for Numerical Methods in Engineering, Vol. 50, pp. 1701-1736 (2001)
    18.Hein, V. L., and Erdogan, F., "Stress Singularities in a Two-Material Wedge," International Journal of Fracture Mechanics, Vol. 7, No. 3, pp. 317-330 (1971)

    下載圖示 校內:2013-08-16公開
    校外:2013-08-16公開
    QR CODE