簡易檢索 / 詳目顯示

研究生: 劉建均
Liu, Chien-Chun
論文名稱: 多振態聲學超材料之計算與模擬
Derivations and Numerical Simulations of Multimode Acoustic Metamaterials
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 73
中文關鍵詞: 聲學超材料負質量密度帶隙內質量系統
外文關鍵詞: acoustical metamaterial, negative mass density, band gap, mass-in-mass system
相關次數: 點閱:103下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於聲學超材料特殊的負質量密度與負體積模數特性,不少學者投入了該領域的探索與應用。為了使聲波超材料發揮更佳的阻絕聲波傳遞特性,本文先利用離散模型去分析質量體由不同排列方式所組成的單位結構系統,歸納出質量體排列方式對系統特性的影響,接著再根據其特性,提出兩種排列方式較複雜的複合型內質量結構,並證明其比排列方式較單純的單位結構擁有更佳的阻絕聲波特性。最後再將此概念發展至連體系統,並以有限元素軟體分析複合型內質量結構之運動模態與帶隙特性,得知本文提出的模型,實際應用中可以有效地阻絕特定頻率範圍內的聲波傳遞。

    Acoustic metamaterial has the ability to achieve unusual properties of negative mass density and negative bulk modulus. In last years many researchers have started to examine the possibility of designing materials with negative refractive index. In this work, we propose geometric arrangements of discrete mass systems to demonstrate the band structure of various periodic lattice. To improve the sound insulation property, it is desirable to increase the number of band gaps and its band width. We thus propose two discrete multimode mass-in-mass lattice systems that are constructed by two kinds of complex masses arrangement. We show that the band gap structures of these systems are better than the simple arranged discrete multimode mass-in-mass lattice systems. Lastly, we extend the concept to a continuum system using a finite element simulation. The result shows that our proposed systems are indeed feasible.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 3 1.3 論文簡介 4 第二章 多質量並列系統之離散分析 6 2.1 系統結構與運動方程式 7 2.2 頻散方程式(dispersion equation)分析 9 2.3 布里淵區(Brillouin zone)之簡介 11 2.4 系統參數配置對頻帶結構的影響 13 Case I:質量 13 Case II:內外彈簧勁度比值 16 Case III:內彈簧勁度 18 2.5 結果討論 31 第三章 層狀內質量系統之離散分析 33 3.1 單一內質量系統 33 3.2 三層內質量系統 37 3.3 不同組成方式之多振態系統比較 43 第四章 複合型內質量系統之離散分析 44 4.1 內質量並列系統 44 4.2 層狀內質量並列系統 49 4.3 結果討論 54 第五章 層狀內質量並列系統之有限元素軟體模擬 55 5.1 幾何設定 55 5.2 材料設定 56 5.3 邊界設定 57 5.4 網格(mesh)分佈 58 5.5 結果與討論 58 第六章 結論與未來展望 62 6.1 結論 62 6.2 未來展望 63 參考文獻 64 附錄A:運動方程式之力分析過程 67 附錄B:係數矩陣與頻散方程式 70

    Chan, C. T., Li, J., Fung, K. H., On extending the concept of double negativity to acoustic waves, J. Zhejiang Univ-SC A 7, pp.24-28 (2006).

    Cheng, Y., Xu, J. Y., Liu, X. J., One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus, Phys. Rev. B 77, 045134 (2008).

    Cummer, S. A., Schurig, D., One path to acoustic cloaking, New J. Phys. 9, pp.45-52 (2007).

    Ding, Y., Liu, Z., Qiu, C., Shi, J., Metamaterial with simultaneously negative bulk modulus and mass density, Phys. Rev. Lett. 99, 093904 (2007).

    Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X., Ultrasonic metamaterials with negative modulus, Nat. Mater. 5, pp.452-456 (2006).

    Huang, G. L., Sun, C. T., Band gaps in a multiresonator acoustic metamaterial, J. Vib. Acoust. 132, 031003-1 (2010).

    Huang, H. H., Sun, C. T., Huang, G. L., On the negative effective mass density in acoustic metamaterials, Int. J. Eng. Sci. 47, pp.610-617 (2009).

    Huang, H. H., Sun, C. T., Locally resonant acoustic metamaterials with 2D anisotropic effective mass density, Philos. Mag. 91, pp.981-996 (2011).

    Huang, H. H., Sun, C. T., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density, New J. Phys. 11, 013003 (2009).

    Kushwaha, M. S., Halevi, P., Dobrzynsky, L., Djafari-Rouhani, B., Acoustic band structure of periodic elastic composites, Phys. Rev. Lett. 71, pp.2022-2025 (1993).

    Lai, Y., Wu, Y., Sheng, P., Zhang, Z. Q., Hybrid elastic solids, Nat. Mater. 10, (2011).

    Lazarow, B. S., Jensen, J. S., Low-frequency band gaps in chains with attached with non-linear oscillators, Int. J. Non-linear Mech. 24, pp.1186-1193 (2007).

    Li, J., Chan, C. T., Double-negative acoustic metamaterial, Phys. Rev. E 70, 055602 (2004).

    Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T., Soukoulis, C. M., Magnetic response of metamaterials at 100 terahertz, Science 306, pp.1351-1353 (2004).

    Liu, A. P., Zhu, R., Liu, X. N., Hu, G. K., Huang, G. L., Multi-displacement microstructure continuum modeling of anisotropic elastic metamaterials, Wave Motion 49, pp.411-426 (2012).

    Liu, X. N., Hu, G. K., Huang, G. L., Sun, C. T., An elastic metamaterial with simultaneously negative mass and bulk modulus, Appl. Phys. Lett. 98, 251907 (2011b).

    Liu, X. N., Hu, G. K., Sun, C. T., Huang, G. L., Wave propagation characterization and design of two-dimensional elastic chiral metacomposite, J. Sound Vib. 330, pp.2536-2553 (2011a).

    Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., Sheng, P., Locally resonant sonic materials, Science 289, pp.1734-1736 (2000).

    Martínez-Sala, R., Sáncho, J., Sanchez, J. V., Gómez, V., Llinares, J., Sound attenuation by sculpture, Nature 378, (1995).

    Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, pp.3966-3969 (2000).

    Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J., Hladky-Hennion, A. C., Phononic crystals and manipulation of sound, Phys. Status Solidi C 6, pp.2080-2085 (2009).

    Sheng, P., Zhang, X. X., Liu, Z., Chan, C. T., Locally resonant sonic materials, Physica B 338, pp.201-205 (2003).
    Smith, D. R., Pendry, J. B., Wiltshire, M. C. K., Metamaterials and negative refractive index, Science 305, pp.788-792 (2004).

    Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G., Zhang, X., Three-dimensional optical metamaterial with a negative refractive index, Nature 455, pp.376-379 (2008).

    Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10, pp.509-514 (1968).

    Vincent, J. H., On the construction of mechanical model to illustrate Helmholtz’s theory of dispersion, Philos. Mag. 46, pp.557-563 (1898).

    Vukusic, P., Sambles, J. R., Photonic structures in biology, Nature 424, pp.852-855 (2003).

    Yao, S., Zhou, X., Hu, G., Experimental study on negative mass effective mass in a 1D mass-spring system, New J. Phys. 10, 043020 (2008).

    Zhu, R., Huang, H. H., Huang, G. L., Sun, C. T., Microstructure continuum modeling of an elastic metamaterial, Int. J. Eng. Sci. 49, pp.1477-1485 (2011).

    下載圖示 校內:2013-08-27公開
    校外:2013-08-27公開
    QR CODE