| 研究生: |
邱庭緯 Chiu, Ting-Wei |
|---|---|
| 論文名稱: |
甲烷催化部分氧化反應之遲滯效應及高效能產氫 Hysteresis Effect and Hydrogen Generation with High Performance of Methane Catalytic Partial Oxidation |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 能源 、產氫 、甲烷 、部分氧化 、遲滯效應 、瑞士捲 、熱回收 |
| 外文關鍵詞: | Energy, hydrogen production, methane, catalytic partial oxidation |
| 相關次數: | 點閱:64 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於發生兩次能源危機導致石油價格上升,發展環保之替代能源為重要的課題,其中氫氣是一種無色、無臭、無味、無毒的可燃性氣體,因此氫能為未來極具發產潛力的能源之一。本文為建立一甲烷催化部分氧化反應(CPOM)產氫之模型,其中以銠(Rh)做為催化劑,碳氧原子比(C/O ratio)分別設定 0.6、1.0 及 1.4來觀察其反應特性。當Re=200時可以發現不論 C/O 比為何,當入口溫度低於550K時該化學反應並不會被啟動,隨入口溫度增加至 550K 附近時部分氧化反應機制隨之啟動,且當入口溫度降低時甲烷部分氧化反應可以自我維持,此時遲滯效應發生。接著,依據廢熱回收的概念設計一瑞士捲產氫反應器做甲烷催化部分氧化反應,其特點為利用反應過之高溫氣體來預熱未反應之低溫氣體,使反應效果提升,進而達到較高之產氫效率,此結構之特點為 1.具熱回收效果 2.占據體積小 3.節省能源等。模擬結果顯示出在碳氧原子比為 1.0、氣時空速(GHSV)為 10000 h -1時利用二捲瑞士捲行反應之下,相較於未具有廢熱回收之反應器,甲烷轉化率可以由 76.9 % 提升至 93.3%,熱回收率為 62 % ,由此可見此瑞士捲反應器提供了良好的熱回收效果以及產氫效率。
Hysteresis effects and reaction characteristics of methane catalytic partial oxidation (CPOM) in a fixed-bed reactor are numerically simulated. The reactions are modeled based on the experimental measurements of CPOM with a rhodium (Rh) catalyst. Three C/O ratios of 0.6, 1.0 and 1.4 are considered in the study. When the Reynolds number is 200, the predictions
indicate that the CPOM is always triggered at around the inlet temperature of 550 K, regardless of what the C/O ratio is. It is of interest that if the inlet
temperature is decreased after the CPOM develops at higher inlet temperatures, the reversed path of methane conversion is different from the original path at lower inlet temperatures. The hysteresis effect of the CPOM is thus observed. The hysteresis behavior implies that a higher yield of syngas or hydrogen can be achieved by controlling the reaction process. Decreasing the C/O ratio intensifies the CPOM so that the hysteresis effect is more pronounced, and vice versa. An increase in Reynolds number delays the excitation temperature of CPOM and lessens the hysteresis effect of methane conversion due to the growth of fluid inertial force. However, the hysteresis effect of the maximum temperature in the catalyst bed increases as a result of more methane consumption. Then reactor is featured by a Swiss-roll structure in which a rhodium (Rd) catalyst bed is embedded at the center of the reactor. By recovering the waste heat from the product gas to preheat the reactants, it is found that the combustion, steam reforming and dry reforming of methane in the catalyst bed are enhanced to a great extent. As a result, the methane conversion and hydrogen yield are improved more than 10%. Considering the operation conditions, a high performance of hydrogen generation from the CPOM can be achieved if the number of turns in the reactor is increased or the gas hourly space velocity(GHSV)of the reactants in the catalyst bed is lower. Alternatively, the flow direction of the reactants in the reactor almost plays no part in affecting the performance if the waste heat is recovered. It is thus emphasized that the reactor with a Swiss-roll structure can be applied for implementing CPOM with high yield of hydrogen.
Adhikari, S., Fernando, S., “Hydrogen membrane separation techniques,”
Industrial and Engineering Chemistry Research, Vol.45, pp.875-881,
2006.
2. Ann, M.D.G., Gilbert, F.F., “Simulation of the catalytic partial oxidation
of methane to synthesis gas,” Applied Catalysis A: General Vol.138,
pp.245-264, 1996.
3. ANSYS Fluent v12 User Manual.
4. Ashcroft, A.T., Cheetham, A.K., Foord, J.S., Green, M.L.H., Grey, C.P.,
Murrell, A.J., Vernon, P.D.F., “Selective oxidation of methane to
synthesis gas using transition metal catalysts,” Letters to Nature Vol.344,
pp.319-321, 1990.
5. Al-Hamamre, Z., VoB, S., Trimis, D., “Hydrogen production by thermal
partial oxidation of hydrocarbon fuels in porous media based reformer,”
International Journal of Hydrogen Energy, Vol.34, pp.827-832, 2009.
6. Abashar, M.E.E., Alhabdan, F.M., Elnashaie, S.S.E.H. “Discrete injection
of oxygen enhances hydrogen production in circulating fast fluidized bed
membrane reactors,” International Journal of Hydrogen Energy, Vol.33,
pp.2477-2488, 2008.
7. Adamski, M., “Heat transfer correlations and NTU number for the
longitudinal flow spiral recuperators,” Applied Thermal Engineering,
Vol.29, pp.591-596, 2009.
8. Andrew, P.E.Y., Tiancun, X., Malcolm, L.H.G., “Brief overview of the
partial oxidation of methane to synthesis gas,” Topics in Catalysis, Vol.22,
pp.345-358, 2003.
9. BP, Statistical Review of World Energy, June, 2009. 10. Chen, L., Green, Y.L., Hong, Q., Lin J., Dautzenberg F.M., “Catalytic
partial oxidation of methane to syngas over Ca-decorated-Al 2 O 3 -
supported Ni and NiB catalysts,” Applied Catalysis A: General, Vol.292,
pp.295-304, 2005.
11. Chen, L., Hong, Q., Lin, J., Dautzenberg, F.M., “Hydrogen production by
coupled catalytic partial oxidation and steam methane reforming at
elevated pressure and temperature,” Journal of Power Sources, Vol.164,
pp.803-808, 2007 .
12. Chen, M., Buckmaster, J., “Modelling of combustion and heat transfer in
‘Swiss roll’ micro-scale combustors,” Combustion Theory and Modeling,
Vol.8, pp.701-720, 2004 .
13. Chen, W.H., Liu, C.C., Jiang, T.L., “Hysteresis effects of two interactive
droplets in convective flows,” Twenty-Seventh Symposium (International)
on Combustion/The Combustion Institute, Vol.27,pp.1923-1932,1998 .
14. Chen, W.H., “Partially premixed flame structure and stability of twin
droplets in flows,”Transactions of the ASME, Vol.122,pp.730-740, 2000 .
15. Chen, W.H., Chen, J.C., “Combustion characteristics and energy recovery
of a small mass burn incinerator,” International Communications in Heat
and Mass Transfer, Vol.28, pp.299-310, 2001.
16. Chen, W.H., “Brachial burning and gasification split of a convecting
two-droplet system,” Atomization and Sprays, Vol.11,pp.29-47, 2002.
17. Chen, W.H., Lin, M.R., Jiang, T.L., Chen, M.H., “Modeling and
simulation of hydrogen generation from high-temperature and
low-temperature water gas shift reactions,” International Journal of
Hydrogen Energy, Vol.33, pp.6644-6656, 2008.
18. Chen, W.H., Chiu, T.W., Hung, C.I., Lin, M.R., “ Hysteresis and reaction
characterization of methane catalytic partial oxidation on rhodium
catalyst,” Journal of Power Sources, Vol.194, pp.467-477, 2009. 19. Claridge, J.B., Green, M.L.H., Tsang S.C., Andrew P.E.Y., Alexander T.
A., Battle P.D., “A study of carbon deposition on catalysts during the
partial oxidation of methane to synthesis gas,” Catalysis Letters, Vol.22,
pp.299-305, 1993.
20. Donazzi, A., Michael, B.C., Schmidt, L.D., “Chemical and geometric
effects of Ce and washcoat addition on catalytic partial oxidation of CH 4
on Rh probed by spatially resolved measurements,” Journal of Catalysis,
Vol.260, pp.270-275, 2008.
21. Enger, B.C., Lødeng, R., Holmen, A., “A review of catalytic partial
oxidation of methane to synthesis gas with emphasis on reaction
mechanisms over transition metal catalysts,” Applied Catalysis A:
General, Vol.346, pp.1-27, 2008.
22. Gallo, M., Nenoff, T.M., Mitchell , M.C., “Selectivities for binary ixtures
of hydrogen/methane and hydrogen/carbon dioxide in silicalite and
ETS-10 by Grand Canonical Monte Carlo techniques,” Fluid Phase
Equilibria, Vol.247, pp.135-142, 2006.
23. Groote, A.M.D., Froment, G.F., “Simulation of the catalytic partial
oxidation of methane to synthesis gas,” Applied Catalysis A: General,
Vol.138, pp.245-264,1996.
24. Hickman, D.A., Schmidt, L.D., “Production of syngas by direct catalytic
oxidation of methane,” Science, New Series,Vol.259, pp.343-346, 1993.
25. Halabi, M.H., De Croon, J.M., Van Der Schaaf, J., Cobden, P.D.,
Schouten, J.C., “Modeling and analysis of autothermal reforming of
methane to hydrogen in a fixed bed reformer,” Chemical Engineering
Journal, Vol.137, pp.568-578, 2008.
26. Holman, J.P., “Heat Transfer,” McGraw-Hill, New York, 2009. 27. Horn, R., Williams, K.A., Degenstein, N.J., Bitsch-Larsen, A., Nogare,
D.D., Tupy, S.A., Schmidt, L.D., “Methane catalytic partial oxidation on
autothermal Rh and Pt foam catalysys: Oxidation and reforming zones,
transport effect, and approach to thermodynamic equilibrium,” Journal of
Catalysis, Vol.249, pp.380-393, 2007.
28. Horn, R., Williams, K.A., Degenstein, N.J., Schmidt, L.D., “Syngas by
catalytic partial oxidation of methane on rhodium: Mechanistic
conclusions from spatially resolved measurement and numerical
simulations,” Journal of Catalysis, Vol.242, pp.92-102, 2006.
29. Horn, R., Degenstein, N.J., Williams, K.A., Schmidt, L.D., “Spatial and
temporal profiles in millisecond partial oxidation processes,” Catalysis
Letters, Vol.110, pp.170-178, 2006.
30. Horn, R., Williams, K.A., Degenstein, N.J., Schmidt, L.D., “Mechanism
of H 2 and CO formation in the catalytic partial oxidation of CH 4 on Rh
probed by steady-state spatial profiles and spatially resolved transients,”
Chemical Engineering Science, Vol.62, pp.1298-1307, 2006.
31. Jacobs, G., Chenu, E., Patterson, P.M., Williams, L., Sparks, D., Thomas,
G., Davis, B.H., “Water-gas shift: comparative screening of metal
promoters for metal/ceria systems and role of the metal,” Applied
Catalysis A: General, Vol.258, pp.203-214, 2004.
32. Jiang T.L., Chen, W.S., Tsai, M.J., Chiu, H.H., “A numerical investigation
of multiple flame configurations in convective droplet gasification,”
Combustion and Flame, Vol.103, pp.221-238, 1995.
33. Jin, W., Gu, X., Li, S., Huang, P., Xu, N., Shi, J., “Experimental and
simulation study on a catalyst packed tubular dense membrane reactor for
partial oxidation of methane to syngas,” Chemical Engineering Science,
Vol.55, pp.2617-2625, 2000.
34. Kuo, C.H., Ronney, P.D., “Numerical modeling of non-adiabatic
heat-recirculating combustors,” Proceedings of the Combustion Institute,
Vol.31, pp.3277-3284, 2007. 35. Kim, N.I., Aizumi, S., Yokomori, T., Kato, S., Fujimori, T., Maruta, K.,
“Development and scale effects of small Swiss-roll combustors,”
Proceedings of the Combustion Institute, Vol.31, pp.3243-3250, 2007.
36. Karakaya, M., Avcı, A.K., Aksoylu, A.E., I˙lsen O¨nsan, A.E.Z.,
“Steady-state and dynamic modeling of indirect partial oxidation of
methane in a wall-coated microchannel,” Catalysis Today, Vol.139,
pp.312-321, 2009.
37. Kuo, K.K., “Principle of combustion,” John Wiley & Sons, 2005.
38. Lanza, R., Jaras, S.G., Canu, P., “Partial oxidation of methane over
supported ruthenium catalysts,” Applied Catalysis A: General, Vol.325,
pp.57-67, 2007.
39. Lanza, R., Canu, P., Jaras, S.G., “Partial oxidation of methane over Pt–Ru
bimetallic catalyst for syngas production,” Applied Catalysis A: General,
Vol.348, pp.221-228, 2008.
40. Llyod, S.A., Weinberg, F.J., “A burner for mixture of very low heat
content,” Nature, Vol.251, pp.47-49, 1974.
41. Llyod, S.A., Weinberg, F.J., “Limits to energy release and utilization from
chemical fuels,” Nature, Vol.257, pp.367-370, 1975.
42. Maruta, K., Parc, J.K., Oh, K.C., Fujimori, T., Minaev, S.S., Furesenko,
R.V., “Characteristics of microscale combustion in a narrow heated
channel,” Combustion, Explosion, and Shock Waves, Vol.40, pp.516-523,
2004.
43. Moon, D.J., “Hydrogen production by catalytic reforming of gaseous
hydrocarbons (Methane & LPG),” Catalysis Surveys from Asia, Vol.12,
pp.188-202, 2008.
44. Nguyen, B.N.T., Leclerc, C.A., “Metal oxides as combustion catalysts for
a stratified, dual bed partial oxidation catalyst,” Journal of Power Sources,
Vol.163, pp.623-629, 2007. 45. Otsuka, K., Wang, Y., “Direct conversion of methane into oxygenates,”
Applied Catalysis A: General, Vol.222, pp.145-161, 2001.
46. Patankar, S.V., “Numerical heat transfer and fluid flow”. Washington, DC:
Hemisphere, 1998.
47. Radhakrishnan, R., Willigan, R.R., Dardas, Z., Vanderspurt , T. H.,
“Water Gas Shift Activity of Noble Metals Supported on Ceria-Zirconia
Oxides,” American Institute of Chemical Engineers, Vol.52, pp.n5, 2006.
48. Sloan Jr, E.D., Koh, C., “Clathrate Hydrates of Natural Gases,” 2 rd
Edition, 730 pp, 1998.
49. Shih, H.Y., Huang, Y.C., “Thermal design and model analysis of the
Swiss-roll recuperator for an innovative micro gas turbine,” Applied
Thermal Engineering, Vol.29, pp.1493-1499, 2009.
50. Schwiedernoch, R., Tischer, S., Correa, C., Deutschmann, O.,
“Experimental and numerical study on the transient behavior of partial
oxidation of methane in a catalytic monolith,” Chemical Engineering
Science, Vol.58, pp.633-642, 2005.
51. Sonibare, J.A., Akeredolu, F.A., “A theoretical prediction of non-methane
gaseous emissions from natural gas combustion,” Energy Policy, Vol.32,
pp.1653-1665, 2004.
52. Sitzki, L., Borer, K., Schuster, E., Ronney, P.D., “Combustion in
microscale heat-recirculating burners,” The Third Asia-Pacific
Conference on Combustion, 2001.
53. Tavazzi, I., Beretta, A., Groppi, G., Forzatti P., “Development of a
molecular kinetic scheme for methane partial oxidation over a Rh/ αααα
-Al 2 O 3 ,” Journal of Catalysis, Vol.241, pp.1-13, 2006.
54. Tong, G.C., Flynn, J., Leclerc, C.A., “A dual catalyst bed for the
autothermal partial oxidation of methane to synthesis gas,” Catalysis
Letters, Vol.102, pp.131-137, 2005. 55. Tournier, G., Pijolat, C., “Selective filter for SnO 2 -based gas sensor:
application to hydrogen trace detection,” Sensors and Actuators B,
Vol.106, pp.553-562, 2005.
56. Tsai, B.J., Wang, Y.L., “A novel Swiss-Roll recuperator for the
microturbine engine,” Applied Thermal Engineering, Vol.29, pp.216-223,
2009.
57. Tummers, M.J., Hubner, A.W., van Veen, E.H., Hanjalic, K., van der
Meer, Th.H., “Hysteresis and transition in swirling nonpremixed flames,”
Combustion and Flame, Vol.156, pp.447-459, 2009.
58. Williams, K.A., Horn, R., Schmidt, L.D., “Performance of Mechanisms
and Reactor Models for Methane Oxidation on Rh,” AIChE Journal,
Vol.53, pp.2097-2113, 2007.
59. 曲新生, 陳發林 “氫能技術,” 五南圖書公司,2006 年 4 月。
60. 陳維新, “生質物與生質能,” 高立圖書有限公司,2008 年 9 月。
61. 陳維新, “能源概論,” 高立圖書有限公司,2009 年 2 月。
62. 陳維新, “空氣污染與控制,” 高立圖書有限公司,2009 年 10 月。
63. 環保署 http://www.epa.gov.tw/