| 研究生: |
吳明治 Wu, Ming-Chih |
|---|---|
| 論文名稱: |
不同直徑之二氧化鈦奈米電紡絲在染料敏化太陽能電池中之光散射特性及電荷傳輸的研究 Light-Scattering Properties and Charge Transports of Titania Nanofibers with Different Diameters in the Dye-Sensitized Solar Cells |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 共同指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 二氧化鈦奈米電紡絲 、染料敏化太陽能電池 |
| 外文關鍵詞: | Titania nanofibers, Dye-Sensitized Solar Cells |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用高分子輔助電紡絲技術,製備出特定直徑的二氧化鈦奈米絲。二氧化鈦奈米絲隨機堆疊形成的支架結構,對入射光具有強烈的散射能力。在散射光譜中的曲線,會因二氧化鈦奈米絲直徑上升,而產生紅移的現象。電紡絲的支架結構對入射光的散射強度,會隨著沉積的厚度而線性上升。而這些特徵光散射光譜,可由米氏散射理論來解釋,此理論是用來描述球狀物體對光線散射的現象。
將二氧化鈦奈米絲用在建構染料敏化太陽能電池之上,電池的效率主要受到短路電流密度以及填充因子所影響。直徑326 nm之電紡絲產生最高的短路電流密度,為6.33 mA/cm2,而最高效率為3.27%。而原因來自於直徑326 nm之電紡絲,與染料吸收峰的重疊。藉由二氧化鈦奈米絲支架內部的光散射現象,使光繁殖和效率轉換最佳化。
除此之外,直徑281 nm的電紡絲在太陽能電池中,具有最高的填充因子,代表最高電池內部的電能傳輸效率。而內部串聯電阻與內部並聯電阻相比之下,前者為影響填充因子的主要因素。
在二氧化鈦奈米絲建構的染料敏化太陽能電池之研究中,包含特徵光散射波長、短路電流密度和填充因子,這些研究結果顯示此結構裝置,對於未來光電轉換的應用很有幫助。
Polymer-assisted electrospinning was utilized to fabricate titania nanofibers with desired fiber diameters. Titania nanofibers stacked together and formed randomly-distributed scaffolds revealing the intensive scattering to the incident light. These light scattering profiles exhibited the red shift as the titania nanofiber diameters became larger. Scattering intensities were found linearly increased with the fiber deposition thicknesses; and the preferred scattering wavelengths followed the Mie scattering theory, originally utilized to describe the light scattering of spherical subjects.
Electrospun titania nanofibers were further employed in the construction of the dye-sensitized solar cells. Efficiencies of theses solar cells were mainly affected by the short circuit current densities (JSC) and the fill factors (ff). Titania nanofiber sample with a diameter of 326 nm generated the highest JSC of 6.33 mA/cm2 and the best energy concersion efficiency as high as 3.27%. The high JSC generated by 326 nm titania sample was the result of the overlap of the preferred scattering band and the dye absorption peak. Optimized light propagation and efficiency energy conversion were realized by the light scattering inside the titania nanofiber scaffolds.
In addition, the highest fill factor was received in the sample of 281 nm titania nanofibers, indicating the efficient electric delivery with the low internal series resistance (RS) instead of the internal shunt resistance (RSh). Investigations conducted in these solar cells constructed by electrospun titania nanofibers, including the preferred scattering wavelengths, JSC values, and fill factors, demonstrated the promising photovoltaic applications with respects to the device constructions.
[1] B. O’Regan and M. Grätzel / A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 335, 737, 1991
[2] S.-S. Choi, Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, and K.-S. Han / Electrospun PVDF Nanofiber Web as Polymer Electrolyte or Separator. Electrochimica Acta 50, 339, 2004
[3] H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. Mcdonough, J. Zhu, Y. Yang, M. D. Mcgehee, and Yi Cui / Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode. Nano Letters 10, 4242, 2010
[4] J. Shui and C.-M. L. James / Platinum Nanowires Produced by Electrospinning. Nano Letters 9, 1307, 2009
[5] H. Kim, Y. Choi, N. Kanuka, H. Kinoshita, T. Nishiyama, and T. Usami / Preparation of Pt-Loaded TiO2 Nanofibers by Electrospinning and Their Application for WGS Reactions. Applied Catalysis A: General 265, 352, 2009
[6] D. Li and Y. Xia / Fabrication of Titania Nanofibers by Electrospinning. Nano Letters 3, 555, 2003
[7] V. Thavasi, G. Singh, and S. Ramakrishna / Electrospun Nanofibers in Energy and Environmental Applications. Energy & Environmental Science 1, 205, 2008
[8] F. Jian, N. Haitao, L. Tong, and W. Xungai / Applications of Electrospun Nanofibers. Chinese Science Bulletin 53, 2265, 2008
[9] C. Burger, B. S. Hsiao, and B. Chu / Nanofibrous Materials and Their Applications. Annual Review of Materials Research 36, 333, 2006
[10] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna / A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Composites Science and Technology 63, 2223, 2003
[11] M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, and D. Y. Kim / Electrospun TiO2 Electrodes for Dye-Sensitized Solar Cells. Nanotechnology 15, 1861, 2004
[12] S. M. Sze / Physics of Semiconductor Devices, 2nd Edition. John Wiley And Sons, New York, 1981
[13] U. Diebold / The Surface Science of Titanium Oxide. Surface Science Reports 48, 53, 2003
[14] N.-G. Park, J. Van De Lagemaat, and A. J. Frank / Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. The Journal of Physical Chemistry B 104, 8989, 2000
[15] S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida / Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells. The Journal of Physical Chemistry B 107, 8607, 2003
[16] V. Thavasi, V. Renugopalakrishnan, R. Jose, and S. Ramakrishna / Controlled Electron Injection and Transport at Materials Interfaces in Dye Sensitized Solar Cells. Materials Science and Engineering R 63, 81, 2009
[17] B. Tan and Y. Wu / Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites. The Journal of Physical Chemistry B 110, 15932, 2006
[18] C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-H. Ngoc-Le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin, and M. Grätzel / Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS NANO 3, 3103, 2009
[19] J.-J. Wu, G.-R. Chen, C.-C. Lu, W.-T. Wu, and J.-S. Chen / Performance and Electron Transport Properties of TiO2 Nanocomposite Dye-Sensitized Solar Cells. Nanotechnology 19, 105702, 2008
[20] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes / Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells. Nano Letters 6, 215, 2006
[21] M. K. Nazeeruddin, A. Kay, l. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M.Grätzel / Conversion of Light to Electricity by cis-X2Bis( 2,2’-bipyridyl-4,4’-dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes. Journal of the American Chemical Society 115, 6382, 1993
[22] American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra. 2011
[23] M. Grätzel / Dye-Sensitized Solar Cells. Journal of Photochemistry And Photobiology C: Photochemistry Reviews 4, 145, 2003
[24] Y.-N. Chen / Light Propagation And Enhanced Photocatalytic Activities In Electrospun Titania Nanofibers. 2009
[25] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin / Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Films. Polymer 40, 7397, 1999
[26] M. Y. Song, D. K. Kim, S. M. Jo, and D. Y. Kim / Enhancement of the Photocurrent Generation in Dye-Sensitized Solar Cell Based on Electrospun TiO2 Electrode by Surface Treatment. Synthetic Metals 155, 635, 2005
[27] K. Onozuka, B. Ding, Y. Tsuge, T. Naka, M. Yamazaki, S. Sugi, S. Ohno, M. Yoshikawa, and S. Shiratori / Electrospinning Processed Nanofibrous TiO2 Membranes for Photovoltaic Applications. Nanotechnology 17, 1026, 2006
[28] H. Kokubo, B. Ding, T. Naka, H. Tsuchihira, and S. Shiratori / Multi-Core Cable-Like TiO2 Nanofibrous Membranes for Dye-Sensitized Solar Cells. Nanotechnology 18, 165604, 2007
[29] K. Mukherjee, T.-H. Teng, R. Jose, and S. Ramakrishna / Electron Transport in Electrospun TiO2 Nanofiber Dye-Sensitized Solar Cells. Applied Physics Letters 95, 012101, 2009
[30] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel / Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. Journal of The American Ceramic Society 80, 3157, 1997
[31] N.-G. Park, G. Schlichtho1rl, J. Van De Lagemaat, H. M. Cheong, A. Mascarenhas, and J. Frank / Dye-Sensitized TiO2 Solar Cells: Structural and Hotoelectrochemical Characterization of Anocrystalline Electrodes Formed from the Hydrolysis of TiCl4. The Journal of Physical Chemistry B 103, 3308, 1999
[32] L.-Y. Zeng, S.-Y. Dai, K.-J. Wang, X. Pan, C.-W. Shi, and L. Guo / Mechanism of Enhanced Performance of Dye-Sensitized Solar Cell Based TiO2 Films Treated by Titanium Etrachloride. Chinese Physics Letters 21, 1835, 2004
[33] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, and M. Grätzel / Control of Dark Current in Photoelectrochemical (TiO2/I--I3-) and Dye-Sensitized Solar Cells. Chemical Communications 34, 4351, 2005
[34] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel / Fabrication of Thin Film Dye Sensitized Solar Cells With Solar to Electric Power Conversion Efficiency over 10%. Thin Solid Films 516, 4613, 2008
[35] P. M. Sommeling, B. C. O’Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, and J. A. M. Van Roosmalen / Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B 110, 19191, 2006
[36] A. Kay / Solar Cells Based on Dye-Sensitized Nanocrystalline TiO2 Electrodes. Ecole Polytechnique Federale De Lausanne, 1994
[37] S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, and J. R. Durrant / Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: The Minimization of Kinetic Redundancy. Journal of The American Chemical Society 127, 3456, 2005
[38] Q. W., S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, and H. Imai / Characteristics of High Efficiency Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B 110, 25210, 2006
[39] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, and M. Grätzel / Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids. The Journal of Physical Chemistry C 111, 6550, 2007
[40] T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura / Morphology of A TiO2 Photocatalyst(Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. Journal of Catalysis 203, 82, 2001
[41] J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-Sero / Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit Photovoltage Decay Method. Journal of The American Chemical Society 126, 13550, 2004
[42] G. Mie / Contributions to the Optics of Turbid Media Particularly of Colloidal Metal Solutions. Annals of Physics 25, 377, 1908
[43] M. Okuya, N. A. Prokudina, K. Mushika, and S. Kaneko / TiO2 Thin Films Synthesized by the Spray Pyrolysis Deposition(SPD) Technique. Journal of the European Ceramic Society 19, 903, 1999
[44] M. Okuya, K. Nakade, and S. Kaneko / Porous TiO2 Thin Films Synthesized by a Spray Pyrolysis Deposition(SPD) Technique and Their Application to Dye-Sensitized Solar Cells. Solar Energy Materials & Solar Cells 70, 425, 2002
[45] F. Möllers, H. J. Tolle, and R. Memming / On the Origin of the Photocatalytic Deposition of Noble Metals on TiO2. Journal of the Electrochemical Society 121, 1160, 1974
[46] H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu / An Efficient and Low-Cost TiO2 Compact Layer for Performance Improvement of Dye-Sensitized Solar Cells. Electrochimica Acta 54, 1319, 2009
[47] J. N. Hart, D. Menzies,Y.-B. Cheng, G. P. Simon, and L. Spiccia / TiO2 Sol–Gel Blocking Layers for Dye-Sensitized Solar Cells. Comptes Rendus Chimie 9, 622, 2006
[48] B. Peng, G. Jungmann, C. Jäger, D. Haarer, H.-W. Schmidt, and M. Thelakkat / Systematic Investigation of the Role of Compact TiO2 Layer in Solid State Dye-Sensitized TiO2 Solar Cells. Coordination Chemistry Reviews 248, 1479, 2004
[49] M. Y. Song, Y. R. Ahn, S. M. Jo, and D. Y. Kim / TiO2 Single-Crystalline Nanorod Electrode for Quasi-Solid-State Dye-Sensitized Solar Cells. Applied Physics Letters 87, 113113, 2005
[50] I.-D. Kim, J.-M. Hong, B. H. Lee, and D. Y. Kim / Dye-Sensitized Solar Cells Using Network Structure of Electrospun ZnO Nanofiber Mats. Applied Physics Letters 91, 163109, 2007
[51] R. Zhu, C.-Y. Jiang, X.-Z. Liu, B. Liu, A. Kumar, and S. Ramakrishna / Improved Adhesion of Interconnected TiO2 Nanofiber Network on Conductive Substrate and Its Application in Polymer Photovoltaic Devices. Applied Physics Letters 93, 013102, 2008
[52] T.-Y. Shie / Electrospun Titanium Dioxide Nanofibers for Hydrogen Production by UV-Induced Water Splitting. 2007
[53] H. G. Agrell, J. Lindgren, and A. Hagfeldt / Coordinative Interactions In A Dye-Sensitized Solar Cell. Journal Of Photochemistry And Photobiology A: Chemistry 164, 23, 2004
[54] M. Grätzel / Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry 44, 6841, 2005
[55] J.-J. Lee, G. M. Coia, and N. S. Lewis / Current Density versus Potential Characteristics of Dye-Sensitized Nanostructured Semiconductor Photoelectrodes. 2. Simulations. Journal of Physical Chemistry B 108, 5282, 2004
[56] B. C. O’Regan, K. Walley, M. Juozapavicius, A. Anderson, F. Matar, T. Ghaddar, S. M. Zakeeruddin, C. Klein, and J. R. Durrant / Structure/Function Relationships in Dyes for Solar Energy Conversion: A Two-Atom Change in Dye Structure and the Mechanism for Its Effect on Cell Voltage. Journal of the American Chemical Society 131, 3541, 2009
[57] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson / Dye-Sensitized Solar Cells. Chemical Reviews 110, 6595, 2010
[58] X. Zhang, Y. Lin, D. He, J. Zhang, Z. Fan, and T. Xie / Interface Junction at Anatase/Rutile in Mixed-Phase TiO2: Formation and Photo-Generated Charge Carriers Properties. Chemical Physics Letters 504, 71, 2011
校內:2016-08-22公開