| 研究生: |
邱盈達 Chiu, Ying-Ta |
|---|---|
| 論文名稱: |
高鉛銲錫與其覆晶接點之電遷移行為研究 Investigation on the Electromigration Behavior of High Pb Solder and Its Flip Chip Solder Joint |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 銲錫 、電遷移 、過飽和 、再結晶 |
| 外文關鍵詞: | solder, electromigration, supersaturation, recrystallization |
| 相關次數: | 點閱:172 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係探討95Pb5Sn銲錫合金薄帶試片以及95Pb5Sn與63Sn37Pb的覆晶複合銲錫接點,於通電過程電遷移所導致之微觀組織變化與再結晶行為。95Pb5Sn銲錫合金薄帶試片,於室溫下施加6×10^3A/cm^2,利用臨場同步輻射XRD分析討論鉛與錫繞射峰的消長變化; 95Pb5Sn與63Sn37Pb的覆晶複合銲錫接點試片,施加2.1,3.3,4.2,4.6以及5.0×10^4A/cm^2,5種不同的電流密度,利用SEM及EDX即時連續觀察方法分析討論錫鉛接點微結構和成分變化。
95Pb5Sn銲錫薄帶的鉛的繞射峰,最強的是(222),其次依序是(311), (200),(220)和(111)等結晶面,通電過程,結晶面逐漸消失,剩下(111)和(200)繞射峰,並且鉛(111) 和(200)的位置都有稍微向低角度偏移2θ 0.1度,更長時間通電,則鉛的結晶面完全消失。而錫原有的繞射峰(211)以及(321)於通電過程完全消失。停止通電後,逐漸出現鉛(200) 、(220) 和(111)繞射峰,以及錫(211)繞射峰。
覆晶複合銲錫接點於通電過程,於SEM之觀察,出現富錫相完全消失(溶解)之現象,此行為對應著一臨界電流密度,低於此臨界電流密度,富錫相並不溶解。此溶解行為依電流密度變化,具有兩個活化能Q1=38kJ/mol(當電流密度大於4.2×10^4A/cm^2)以及Q2=159kJ/mol(當電流密度小於4.2×10^4A/cm^2)。施加4.2×10^4A/cm^2電流密度,錫在鉛的濃度為7.00wt%,幾乎為熱平衡濃度的2倍。
富錫相與鉛晶格長時間受到電子撞擊時,鉛晶格膨脹,富錫相則發生溶解行為,固溶至富鉛基地相。停止通電後,鉛晶格恢復,80分鐘到120分鐘之間,富錫相再度析出。富錫相於電流停止之後,再結晶析出為奈米纖維組織。本研究嘗試解析上述電流造成之變化,研提電流造成第二相溶解與過飽和(錫溶於鉛)之原因,以及基地富鉛相與第二相(富錫相)再結晶機制。
This study investigated the effect of electromigration on the microstructure variation and recrystallization behavior of 95Pb5Sn solder strip and flip chip 95Pb5Sn/63Sn37Pb composite solder bump. The solder strip was stressed with 6 × 10^3A/cm^2 electrical current under ambient condition at room temperature. The evolution of the XRD diffraction peaks were investigated with in situ synchrotron XRD; The 95Pb5Sn/63Sn37Pb composite solder bump was stressed with various current densities of 3.3, 4.2, 4.6, and 5.0 × 10^4A/cm^2. The microstructure variation and the composition of the solder joint were investigated with in situ SEM and EDX analysis.
The XRD diffraction peak for Pb of the 95Pb5Sn solder strip was dominated by (222) facet and followed sequentially by (311), (200), (220), and (111). The diffraction peaks diminish gradually upon current stressing. The (200) and (111) disappear last and exhibit slight peak shift, 0.1 degree of 2θ, to the lower angle before they eventually vanish. Sn of the as prepared solder strip exhibits (211) and (321) peaks which disappear completely upon current stressing. The Pb (200), (220), (111) and Sn (211) facets gradually show up after current stops.
The in situ SEM observation of the flip chip composite solder joint shows that the Sn secondary phase gradually disappears (dissolves) upon current stressing. There exists a critical current density below which the Sn does not diminish. The dissolution behavior exhibit two stages, with respect to current density, of which the corresponding activation energies are Q1 = 38kJ/mol (at current densities above 4.2×10^4A/cm^2) and Q2=159kJ/mol (at current densities below 4.2×10^4A/cm^2). The concentration of Sn reaches 7.00 wt% at 4.2×10^4A/cm^2, which is twice as that of the thermal equilibrium solubility.
The above mentioned experimental results indicate that the Pb crystal relaxed upon current stressing, which gives rise to the dissolution of Sn in the Pb matrix. The Pb crystal lattice recovered when current stops and induces the precipitates of the Sn secondary phase. The recrytallization of the Sn-rich phase forms nanorod in the matrix. This study attempted to analyze the behavior of the microstructure variation of the solder upon current stressing. The mechanisms of the dissolution of the secondary phase, the supersaturation of the Sn-in-Pb, and the recrystallization of the primary Pb matrix and secondary Sn phase were proposed after the analysis.
1. P. Greenfield and M. B. Bever, “The Evolution of the Energy Stored by a Gold-Silver Alloy Cold-Worked at 195°C and at Room Temperature”, Acta Metallurgica, Vol. 4, Issue 4, 1956, pp. 433-439
2. R. E. Reed-Hill, Physical Metallurgy Principles, 3rd edition, PWS, Boston, USA, 1991, pp. 227~271, Chapter 8.
3. B.F. Decker and D. Harker, "Recrystallization in Rolled Copper", Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), 188 , 1950, pp. 887~888
4. L. M. Clarebrough, M. E. Hargreaves and G. W. West, “The Release of Energy during Annealing of Deformed Metals”, Proceedings of the Royal Society A, Vol. 232, 1955, pp. 252~270.
5. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys: Second edition, Academic Press, United Kingdom, 2001, pp. 130~133.
6. R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. Juul Jensen, M. E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A. D. Rollett, “Current Issues in Recrystallization: a Review”, Materials Science and Engineering A, Vol. 238, 1997, pp. 219~274.
7. J. W. Christian, The Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon Press, Oxford, 1975, pp. 23~78, Chapter 2.
8. R. D. Doherty, in: R.W. Cahn, P. Haasen, Diffusive Phase Transformations in Physical Metallurgy, 4th edition, Elsevier, Amsterdam, 1996, p. 1369.
9. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys: Second edition, Academic Press, United Kingdom, 2001, p. 308.
10. J. E. Bailey and P. B. Hirsch “The Recrystallization Process in Some Polycrystalline Metals”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 267, No. 1328 , 1962, pp. 11-30.
11. M. A. Matin, W. P. Vellinga and M. G. D. Geers, “Aspects of Coarsening in Eutectic Sn–Pb”, Acta Materialia, Vol. 52, 2004, pp. 3475~3482.
12. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys: Second edition, Academic Press, United Kingdom, 2001, pp. 45~46.
13. M. Perez, “Gibbs-Thomson Effects in Phase Transformations”, Scripta Materialia, Vol. 52, 2005, pp. 709~712.
14. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys: Second edition, Academic Press, United Kingdom, 2001, p. 279.
15. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys: Second edition, Academic Press, United Kingdom, 2001, p. 178.
16. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys: Second edition, Academic Press, United Kingdom, 2001, p. 167.
17. I. A. Blech, “Electromigration in Thin Aluminum Films on Titanium Nitride”, Journal of Applied Physics, Vol. 47, 1976, pp. 1203~1208.
18. J. V. Ek and A. Lodder, “Electromigration of Hydrogen in Metals”, Defect and Diffusion Forum, Vol. 115, 1994, pp. 3~4.
19. G. A. Rinne, “Issues in Accelerated Electromigration of Solder Bumps”, Microelectronics Reliability, Vol. 43, No. 12, 2003, pp. 1975~1980.
20. V. B. Fiks, “On the Mechanism of the Ions in Metals”, Soviet Physics Solids State (English translation), Vol. 1, No. 1. 1959, pp. 14~28.
21. 夏鼐、殷瑋璋,”湖北銅綠山古銅礦”,考古學報,1期,1982年。
22. 王尚德, 希臘文明, 華茲文化,2010, 56-57頁。
23. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, Ohio, USA, Volume 1, 1986, p. 1848.
24. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology”, Materials Science and Engineering R, Vol. 38, No. 2, 2002, pp. 55~105.
25. J. W. Nah, J. H. Kim, H. M. Lee, and K. W. Paik, “Electromigration in Flip Chip Solder Bump of 97Pb-3Sn/37Pb-63Sn Combination Structure”, Acta Materialia, Vol. 52, No. 1, 2004. pp. 129~136.
26. J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, “Mechanism of Electromigration-induced Failure in the 97Pb-3Sn and 37Pb-63Sn Composite Solder Joints”, Journal of Applied Physics, Vol. 94, No. 12, 2003, pp. 7560~7566.
27. C. L. Lai, C. H. Lin and C. Chen, “Electromigration at the High-Pb-Eutectic SnPb Solder Interface”, Journal of Materials Research, Vol. 19, No. 2, 2004, pp. 550-556.
28. D. J. Brody, J. L. Pirkle, R. A. Kramer, K. M. Flegal, T. D. Matte, E. W. Gunter and D. C. Paschal, “Blood Lead Levels in the US Population”, The Journal of the American Medical Association, Vol. 272, 1994, pp. 277~283.
29. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering R, Vol. 27, No. 5~6, 2000, pp. 95~141.
30. Y. Li, K. S. Moon and C. P. Wong, “Electronics Without Lead”, Science, Vol. 308, No. 3, 2005, pp. 55~105.
31. W. J. Tomlinson and A. Fullylove, “Strength of Tin-based Soldered Joints”, Journal of Materials Science, Vol. 27, No. 21, 1992, pp. 5777~5782.
32. J. W. Morris, Jr. and J. L. F. Goldstein, “Effect of Substrate on the Microstructure and Creep of Eutectic In-Sn”, Metallurgical and Materials Transactions A: Physcial Metallurgy and Materials Science, Vol. 25, No. 12, 1994, pp. 2715~2722.
33. S Vaynman and M. E. Fine, “Flux Development for Lead-free Solders Containing Zinc”, Journal of Electronic Materials, Vol. 29, No. 10, 2000, pp. 1160~1163.
34. L. F. Miller, “Controlled Collapse Reflow Chip Jointing”, IBM Journal of Research and Development, Vol. 44, No. 1, Jan, 2000, pp. 93~104.
35. E. M. Davis, W. E. Harding, R. S. Schwartz, J. J. Corning, “Solid Logic Technology: Versatile, High Performance Microelectronics”, IBM Journal of Research Development, Vol. 44 (1/2), 2000, pp. 56~68.
36. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, USA, 1996, Chapter 1.
37. M. Pecht, Integrated Circuit, Hybrid, and Multichip module Package Design Guidelines, John Wiley & Sons, New York, USA, 1994, Chapter 7.
38. P. E. Hovsepian, D. B. Lexis, and W. D. Munz, “Recent Progress in Large Scale Manufacturing of Multilayer/Superlattice Hard Coatings”, Surface and Coatings Technology, Vol. 133, 2000, pp. 166~175.
39. K. L. Lin and Y. T. Liu, “Manufacturing of Solder Bumps with Cu/Ta/Cu as Under Bump Metallurgy”, IEEE Transactions on Advanced Packaging, Vol. 22, No. 4, 1999, pp. 580-585.
40. C. J. Chen and K. L. Lin, “Electroless Ni-Cu-P Barrier Between Si/Ti/Al Pad and Sn-Pb Flip-chip Solder Bumps”. IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, 2001, pp. 691-697.
41. S. Wiegele, P. Thompson, R. Lee, and E. Ramsland, “Reliability and Process Characterization of Electroless Nickel-Gold/Solder Flip Chip Interconnect Technology”, Proceedings of 48th Electronic Components and Technology Conference, Washington, USA, May 25-28, 1998, pp. 861-866.
42. J. L. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, USA, 1994, Chapter 5.
43. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, Ohio, USA, Volume 1, 1986, p. 965.
44. K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”, Materials Chemistry and Physics, Vol. 46, No. 2-3, 1996, pp. 217~223.
45. K. N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metallurgica, Vol. 21, No. 4, 1973, pp. 347~354.
46. K. N. Tu and R. D. Thompson, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metallurgica, Vol. 30, No. 5, 1982, pp. 947~952.
47. K. N. Tu, “Irreversible Processes of Spontaneous Whisker Growth in Bimetallic Cu-Sn Thin-Film Reactions”, Physical Review B, Vol. 49, No. 3, 1994, pp. 2030~2034.
48. C. C. Wei, P. C. Liu, C. Chen, J. C. B. Lee and I Ping Wang, “Relieving Sn Whisker Growth Driven by Oxidation on Cu Leadframe by Annealing and Reflowing Treatments”, Journal of Applied Physics Vol. 102, 2007, pp. 043521-1~7
49. F. Y. Ouyang, K. Chen, K. N. Tu and Y. S. Lai, “Effect of Current Crowding on Whisker Growth at the Anode in Flip Chip Solder Joints”, Applied Physics Letters, Vol. 91, 2007, 231919-1~3
50. Y. H. Liu and K. L. Lin, “Damages and Microstructural Variation of High-lead and Eutectic SnPb Composite Flip Chip Solder Bumps Induced by Electromigration”, Journal of Materials Research, Vol. 20, No. 8, 2005, pp. 2184~2193.
51. J. W. Nah, J. O. Suh, and K. N. Tu, “Effect of Current Crowding and Joule Heating on Electromigration-induced Failure in Flip Chip Composite Solder Joints Tested at Room Temperature”, Journal of Applied Physics, Vol.98, 2005, pp. 013715-1~6
52. A. T. Wu, A. M. Gusak, K. N. Tu, and C. R. Kao, “Electromigration-induced Grain Rotation in Anisotropic Conducting Beta Tin”, Applied Physics Letters, Vol. 86, 2005, pp. 241902-1~3.
53. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders and S. B. Warner, “The Science and Design of Engineering Materials,” McGraw-Hill, USA, 1999, p.778.
54. Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in Eutectic SnPb Solder Lines”, Journal of Applied Physics, Vol. 89, No. 8, 2001, pp. 4332~4335.
55. D. G. Kim, W. C. Moon, S. B. Jung, “Effects of Electromigration on Microstructural Evolution of Eutectic SnPb Flip Chip Solder Bumps”, Microelectronic Engineering, Vol. 83, 2006, pp. 2391~2395.
56. S. M. Kuo and K. L. Lin, “Polarity Effect of Electromigration on Intermetallic Compound Formation in a Cu/Sn-9Zn/Cu Sandwich”, Journal of Materials Research, Vol. 23, No. 4, 2008, pp. 1087~1094.
57. Y. D. Lu, X. Q. He, .Y F. En, X. Wang and Z. Q. Zhuang, “Polarity Effect of Electromigration on Intermetallic Compound Formation in SnPb Solder Joints”, Acta Materialia, Vol. 57, 2009, pp. 2560~2566.
58. H. B. Huntington, in Diffusion in Solids: Recent Developments, A. S. Nowick and J. J. Burton Academic, New York, 1979, pp. 303–352.
59. A. T. Huang, A. M. Gusak, K. N. Tu, and Y. S. Lai, “Thermomigration in SnPb Composite Flip Chip Solder Joints”, Applied Physics Letters, Vol. 88, No. 14, 2006, pp. 14191-11~13.
60. D. Gupta, K. Vieregge and W. Gust, “Interface Diffusion in Eutectic Pb-Sn Solder”, Acta Materialia, Vol. 47, No. 1, 1999, pp. 5~12.
61. 陳力俊,張立,梁鉅銘,林文台,楊哲人,鄭晃忠,材料電子顯微鏡學,國科會精儀中心,新竹,2003,pp. 91-101.
62. C. K. Chou, C. A. Chen, S. W. Liang, and C. Chen, “Redistribution of Pb-rich Phase during Electromigration in Eutectic SnPb Solder Stripes”, Journal of Applied Physics, Vol. 99, 2006, pp. 054502-1~6.
63. A. Magnaterra, “Structure Factor and Resistivity of Copper and Silver”, Physics Letter A , Vol. 44, 1973, pp. 63~64.
64. S. M. Kuo, and K. L. Lin, “The Hillock Formation in a Cu/Sn-9Zn/Cu Lamella upon Current Stressing”, Journal of Electronic Materials, Vol. 36, No. 10, 2007, pp. 1378~1382.
65. K. N. Tu and J. C. M. Li, “Spontaneous Whisker Growth on Lead-Free Solder Finishes”, Materials Science and Engineering A, Vol. 409, 2005, pp. 131~139.