簡易檢索 / 詳目顯示

研究生: 李奕樵
Lee, Yi-Chiao
論文名稱: 雙軸平行驅動之輕巧型撓性定向機構
A Compact Compliant Orienting Mechanism with Parallel Actuation Axes
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 158
中文關鍵詞: 定向機構多自由度並聯機構撓性機構形狀最佳化
外文關鍵詞: orienting mechanism, multi-degree-of-freedom parallel mechanism, compliant mechanism, shape optimization
相關次數: 點閱:83下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用撓性機構形狀最佳化方法,設計一輕巧型並聯式定向機構。輕巧型定向機構近年來的發展由於微創手術機器人、精密光學、微組裝定向、乃至於機器人自動導引等需求而受到重視。本論文提出之定向機構具有旋轉(Pan)及傾俯(Tilt)雙軸旋轉自由度,透過空間共點4R運動鏈連接,使旋轉及傾俯間僅有單向且微量的耦合效應。而平行排列的並聯設計容許致動器固定於地桿,讓定向機構可以有更小巧的尺寸及更佳的動態表現。機構中的撓性桿件其拓樸構形及幾何形狀對於相對運動的傳遞有非常顯著的影響,因此我們設計形狀最佳化的撓性桿件,分散變形時的應力,使其在彈性限內,能有效地將兩枚並列之直線式步進馬達的往復衝程,分別轉換成定向機構的旋轉和傾俯運動。此外,直線式步進馬達內部以螺桿蝸輪囓合形成自鎖現象,令致動器在斷電時產生之保持力足以抵抗撓性桿件變形時的反作用力,提供定向機構極佳的能量使用效率。而經過形狀最佳化,以撓性桿件傳動之輸入位移與輸出定向角呈線性對稱關係,配合開迴路定位控制的步進馬達,使定向機構毋需額外加裝感測器回饋便能精準導引。利用撓性桿件取代部份剛體連桿,可避免操作時的奇異點,更彈性地利用設計空間,使機構有更小的尺寸、更少的零件數、簡化組裝流程與裝配誤差,同時抑制磨耗、背隙和潤滑等議題。最後我們以有限元素法驗證機構的運動行為,並將定向機構具體實現,包含尺寸公差設計、加工組立,並以此原型機進行機構之準確度測試、解析度測試、響應速度測試和極限位置展示。未來期望此定向機構整合機器視覺,應用在智慧型車輛及機器人自動導引等相關領域。

    Orienting mechanisms serve to precisely orientate a tool to a specific configuration. They are found in mechatronics applications such as minimally invasive surgery and vision-based robot guidance. To meet the requirement of miniaturization and ease of control, a compact orienting mechanism is proposed. The mechanism can perform two-degree-of-freedom pan and tilt motion. Due to the combination of spherical mechanism and parallel axes of flexural actuation, the two linear step motors are ground-fixed and placed in parallel, which provide a smaller dimension and better dynamic response. The two axes are only slightly coupled. Through a shape optimization, the flexural mechanisms are designed to transmit a given linear input displacement to a maximal output orientation. The optimal mechanism shape enables a linear input to output relation. The linear relationship provides a precise open-loop control for linear step motors without extra sensors. Due to the self-locking property of the step motors, the mechanism is energy efficient. The replacement of rigid links and kinematic pairs by flexural elements reduces the number of the parts and overall size. Friction, backlash and singularities can be avoided as well. We apply finite element analysis to verify the designed flexural motion. After investigation of the tolerance design, the orienting mechanism is prototyped. The precision test, resolution test, speed test, reliability test, and unloaded demonstration are carried out. With the complete performance test, we expect the orienting mechanism can be used to facilitate the advance of intelligent mechatronics applications.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 IX 圖目錄 XI 符號說明 XVI 第一章 緒論 1 1.1 定向機構簡介與文獻回顧 1 1.1.1 仿人眼機構文獻回顧 2 1.1.2 串聯/並聯旋轉傾俯機構文獻回顧 5 1.2 研究動機與目標 8 1.3 論文架構 9 第二章 設計概念 10 2.1 前言 10 2.2 概念沿革 10 2.2.1 致動器評估 13 2.2.2 直線步進馬達選用 19 2.2.3 第一型(Type I)撓性定向機構之設計概念 22 2.2.4 第二型(Type II)撓性定向機構之設計概念 23 2.2.5 第三型(Type III)撓性定向機構之設計概念 29 2.3 第四型(Type IV)撓性定向機構之設計概念 30 2.3.1 Type IV 設計 30 2.3.2 Type IV 運動分析 37 2.4 材料評估 45 2.5 本章小節 46 第三章 撓性定向機構最佳化設計 47 3.1 前言 47 3.2 撓性機構之數學模型 47 3.2.1 撓性桿件之形狀參數化 47 3.2.2 撓性桿件之變形分析 49 3.3 傾俯機構最佳化設計 52 3.3.1 初步最佳化評估 53 3.3.2 傾俯機構最佳化 62 3.4 旋轉機構最佳化設計 69 3.5 旋轉及傾俯機構之特性曲線 74 3.5.1 旋轉機構 75 3.5.2 傾俯機構 78 3.6 本章小節 80 第四章 有限元素分析驗證 81 4.1 前言 81 4.2 實體模型建立 82 4.2.1 定向機構及相關尺寸 82 4.2.2 有限元素模型 83 4.3 角度驗證 86 4.3.1 旋轉機構 87 4.3.2 傾俯機構 89 4.4 機構運動鏈驗證 91 4.4.1 順向運動學 91 4.4.2 逆向運動學 93 4.5 耦合交互作用 95 4.5.1 輸出耦合效應 95 4.5.2 輸入耦合效應 98 4.6 機構干涉分析 100 4.7 本章小節 102 第五章 撓性定向系統之實現與性能測試 104 5.1 前言 104 5.2 撓性定向系統實現 104 5.2.1 尺寸公差設計 104 5.2.2 其他組件誤差 108 5.3 實驗配置 109 5.4 準確度測試 112 5.5 解析度測試 114 5.5.1 旋轉機構 115 5.5.2 傾俯機構 117 5.5.3 開迴路位移響應控制 119 5.6 響應速度測試 123 5.6.1 旋轉機構 124 5.6.2 傾俯機構 130 5.7 耦合交互作用測試 133 5.8 可靠度測試 137 5.9 定向機構操作展示 140 5.10 本章小節 141 第六章 結論與未來工作 144 6.1 結論 144 6.2 未來工作 146 參考文獻 150 自述 157 著作權 158

    [1] R. Bogue, 2008, "Cutting Robots: A Review of Technologies and Applications," Industrial Robot: An International Journal, 35(5), pp. 390-396.
    [2] J. Burgner, M. Mueller, J. Raczkowsky, and H. Woern, 2009, "Robot Assisted Laser Bone Processing: Marking and Cutting Experiments," in Proc. IEEE/International Conference on Advanced Robotics, pp. 1-6, Munich, Germany.
    [3] M. de Graaf, R. Aarts, B. Jonker, and J. Meijer, 2010, "Real-Time Seam Tracking for Robotic Laser Welding Using Trajectory-Based Control," Control Engineering Practice, 18(8), pp. 944-953.
    [4] S. Briot, V. Arakelian, and S. Guegan, 2008, "Design and Prototyping of a Partially Decoupled 4-DOF 3T1R Parallel Manipulator with High-Load Carrying Capacity," ASME Journal of Mechanical Design, 130(12), 122303.
    [5] C. Yan, F. Gao, and Y. Zhang, 2010, "Kinematic Modeling of a Serial–Parallel Forging Manipulator with Application to Heavy-Duty Manipulations," Mechanics based design of structures and machines, 38(1), pp. 105-129.
    [6] P. P. Pott, H. Scharf, and M. L. R. Schwarz, 2005, "Today's State of the Art in Surgical Robotics," Computer Aided Surgery, 10(2), pp. 101-132.
    [7] G. R. Sutherland, I. Latour, and A. D. Greer, 2008, "Integrating an Image-Guided Robot with Intraoperative MRI," IEEE Engineering in Medicine and Biology Magazine, 27(3), pp. 59-65.
    [8] J. Rassweiler, K. Safi, S. Subotic, D. Teber, and T. Frede, 2005, "Robotics and Telesurgery – An Update on Their Position in Laparoscopic Radical Prostatectomy," Minimally Invasive Therapy and Allied Technologies, 14(2), pp. 109-122.
    [9] DESIRE®, 2011, "Deutsche Servicerobotik Initiative," Stuttgart, Germany, Available: http://www.service-robotik-initiative.de/uebersicht/uebersicht/ (May, 20, 2011).
    [10] R. Barea, L. M. Bergasa, E. Lopez, M. Ocana, D. Schleicher, and A. Leon, 2009, "Robotic Assistants for Health Care," in Proc. IEEE International Conference on Robotics and Biomimetics, pp. 1099-1104, Bangkok, Thailand.
    [11] K.-C. Chen and W.-H. Tsai, 2010, "Vision-Based Autonomous Vehicle Guidance for Indoor Security Patrolling by a SIFT-Based Vehicle-Localization Technique," IEEE Transactions on Vehicular Technology, 59(7), pp. 3261-3271.
    [12] C. Zhichao and S. T. Birchfield, 2007, "Person Following with a Mobile Robot Using Binocular Feature-Based Tracking," in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 815-820, San Diego, CA, USA.
    [13] H. Teimoori and A. V. Savkin, 2010, "Equiangular Navigation and Guidance of a Wheeled Mobile Robot Based on Range-Only Measurements," Robotics and Autonomous Systems, 58(2), pp. 203-215.
    [14] M. Caccia, M. Bibuli, R. Bono, and G. Bruzzone, 2008, "Basic Navigation, Guidance and Control of an Unmanned Surface Vehicle," Autonomous Robots, 25(4), pp. 349-365.
    [15] C. R. Doarn, M. Anvari, T. Low, and T. J. Broderick, 2009, "Evaluation of Teleoperated Surgical Robots in an Enclosed Undersea Environment," Telemedicine and e-Health, 15(4), pp. 325-335.
    [16] R. Murphy, J. Kravitz, S. Stover, and R. Shoureshi, 2009, "Mobile Robots in Mine Rescue and Recovery," IEEE Robotics & Automation Magazine, 16(2), pp. 91-103.
    [17] R. Gregor, M. Lutzeler, M. Pellkofer, K. H. Siedersberger, and E. D. Dickmanns, 2002, "EMS-Vision: A Perceptual System for Autonomous Vehicles," Intelligent Transportation Systems, IEEE Transactions on, 3(1), pp. 48-59.
    [18] C. Armbrust, T. Braun, T. Föhst, M. Proetzsch, A. Renner, H. Schaefer, and K. Berns, 2009, "Ravon—The Robust Autonomous Vehicle for Off-Road Navigation," in Proc. IARP International Workshop on Robotics for Risky Interventions and Environmental Surveillance, pp. 12–14, Brussels, Belgium.
    [19] H. Golnabi and A. Asadpour, 2007, "Design and Application of Industrial Machine Vision Systems," Robotics and Computer-Integrated Manufacturing, 23(6), pp. 630-637.
    [20] M. A. Akhloufi, W. Ben Larbi, and X. Maldague, 2007, "Framework for Color-Texture Classification in Machine Vision Inspection of Industrial Products," in Proc. IEEE International Conference on Systems, Man and Cybernetics, pp. 1067-1071, Montreal, Quebec, Canada.
    [21] J. Blasco, N. Aleixos, and E. Moltó, 2003, "Machine Vision System for Automatic Quality Grading of Fruit," Biosystems Engineering, 85(4), pp. 415-423.
    [22] S. Segvic, A. Remazeilles, A. Diosi, and F. Chaumette, 2009, "A Mapping and Localization Framework for Scalable Appearance-Based Navigation," Computer Vision and Image Understanding, 113(2), pp. 172-187.
    [23] A. Saxena, J. Driemeyer, and A. Y. Ng, 2008, "Robotic Grasping of Novel Objects using Vision," The International Journal of Robotics Research, 27(2), pp. 157-173.
    [24] T. Dinh, Q. Yu, and G. Medioni, 2009, "Real Time Tracking Using an Active Pan-Tilt-Zoom Network Camera," in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3786-3793, St. Louis, USA.
    [25] X. Cindy, F. Collange, F. Jurie, and P. Martinet, 2001, "Object Tracking with a Pan-Tilt-Zoom Camera: Application to Car Driving Assistance," in Proc. IEEE International Conference on Robotics and Automation, 2, pp. 1653-1658.
    [26] J. Brown, 2008, "Pan, Tilt, Zoom: Regulating the Use of Video Surveillance of Public Places," Berkeley Tech. LJ, 23, pp. 755-1507.
    [27] C. Arth, H. Bischof, and C. Leistner, 2006, "TRICam - An Embedded Platform for Remote Traffic Surveillance," presented at the Conference on Computer Vision and Pattern Recognition Workshop on Embedded Computer Vision, New York, USA.
    [28] MIL-STD-1472F, 1999 "Human Engineering, Design Criteria for Military Systems, Equipment, and Facilities," D. O. D. D. C. Standard.
    [29] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, 2000, "Principles of Neural Science," 4 ed. New York: McGraw-Hill.
    [30] Y. Nakabo, N. Fujikawa, T. Mukai, Y. Takeuchi, and N. Ohnishi, 2004, "High-Speed and Bio-Mimetic Control of a Stereo Head System," presented at the SICE Annual Conference, Sobboro, Japan.
    [31] C. M. Gosselin, E. St. Pierre, and M. Gagne, 1996, "On the Development of the Agile Eye," IEEE Robotics & Automation Magazine, 3(4), pp. 29-37.
    [32] E. Samson, D. Laurendeau, M. Parizeau, S. Comtois, J.-F. Allan, and C. Gosselin, 2006, "The Agile Stereo Pair for Active Vision," Machine Vision and Applications, 17(1), pp. 32-50.
    [33] G. Cannata and M. Maggiali, 2008, "Models for the Design of Bioinspired Robot Eyes," IEEE Transactions on Robotics, 24(1), pp. 27-44.
    [34] K. Bassett, M. Hammond, and L. Smoot, 2009, "A Fluid-Suspension, Electromagnetically Driven Eye with Video Capability for Animatronic Applications," in Proc. IEEE/RAS International Conference on Humanoid Robots, pp. 40-46, Paris, France.
    [35] T. Villgrattner and H. Ulbrich, 2010, "Optimization and Dynamic Simulation of a Parallel Three Degree-of-Freedom Camera Orientation System," presented at the IEEE on Intelligent Robots and Systems, Taipei, Taiwan.
    [36] T. Villgrattner and H. Ulbrich, 2011, "Design and Control of a Compact High-Dynamic Camera-Orientation System," IEEE/ASME Transactions on Mechatronics, 16(2), pp. 221-231.
    [37] Sony® Coporation, 2004, "Network Camera SNC-RZ30N/2 / SNC-RZ30P/2".
    [38] Rotating Precision Mechanisms Inc., 2011, "8ft Telemetry Tracker RPM Model PG-10520 ", Los Angeles, USA, Available: http://www.rpm-psi.com/home (May, 23, 2011).
    [39] T. Hu, P. K. Allen, N. J. Hogle, and D. L. Fowler, 2009, "Insertable Surgical Imaging Device with Pan, Tilt, Zoom, and Lighting," The International Journal of Robotics Research, 28(10), pp. 1373-1386.
    [40] S. Aiono, J. Gilbert, B. Soin, P. Finlay, and A. Gordan, 2002, "Controlled Trial of the Introduction of a Robotic Camera Assistant (Endo Assist) for Laparoscopic Cholecystectomy," Surgical Endoscopy, 16(9), pp. 1267-1270.
    [41] D. Stewart, 1965, "A Platform with Six Degrees of Freedom," ARCHIVE: Proceedings of the Institution of Mechanical Engineers 1847-1982 (vols 1-196), 180(1965), pp. 371-386.
    [42] Physik Instrumente (PI) GmbH & Co. KG., 2011, "M-840 HexaLight™ High-Speed 6-Axis Positioning System," Karlsruhe, Germany, Available: http://www.physikinstrumente.com/en/index.php (May, 23, 2011).
    [43] M. Carricato and V. Parenti-Castelli, 2004, "A Novel Fully Decoupled Two-Degrees-of-Freedom Parallel Wrist," The International Journal of Robotics Research, 23(6), pp. 661-667.
    [44] Y. Li and Q. Xu, 2011, "A Totally Decoupled Piezo-Driven XYZ Flexure Parallel Micropositioning Stage for Micro/Nanomanipulation," IEEE Transactions on Automation Science and Engineering, 8(2), pp. 265-279.
    [45] J. M. Hervé, 2006, "Uncoupled Actuation of Pan-Tilt Wrists," IEEE Transactions on Robotics, 22(1), pp. 56-64.
    [46] W. L. Ji, 2006. "A CCD-Based Intelligent Driver Assistance System-Based on Lane and Vehicle Tracking," Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan.
    [47] B. P. Trease, Y. M. Moon, and S. Kota, 2005, "Design of Large-Displacement Compliant Joints," ASME Transaction on Journal of Mechanical Design, 127, pp. 788-798.
    [48] SMMC Co., 2011, "Ultrasonic Motors and Voice Coil Motors," Taoyuan, Taiwan, Available: http://www.smmc.com.tw/index.html (May, 27, 2011).
    [49] MotiCont, 2011, "Voice Coil Motors with Internal Bearing," Los Angelas, USA, Available: http://moticont.com/index.htm (May, 27, 2011).
    [50] Maruha Electric Co., Ltd., 2011, "Solenoids," Nagoya, Japan, Available: http://www.maruha-denki.co.jp (May, 27, 2011).
    [51] Tai Shing Electronics Components CORP., 2011, "Solenoids," Taipei County, Taiwan, R.O.C., Available: http://www.tai-shing.com.tw/ (Jul, 20, 2011).
    [52] Haydon Kerk Motion Solutions, Inc, 2011, "Hybrid Linear Actuators," Waterbury, USA, Available: http://www.haydonkerk.com/Home/tabid/324/Default.aspx (May, 27, 2011).
    [53] NIDEC COPAL ELECTRONICS CORP., 2011, "SPS10 - Stepping Motors," Tokyo, Japan, Available: http://www.copal-electronics.com/e/index_e.html (May, 28, 2011).
    [54] Portescap, 2011, "26DBM-L - Stepper Linear Actuators," West Chester, USA, Available: http://www.portescap.com/index.html (May, 28, 2011).
    [55] SKF, 2011, "Bearings, Units and Housing," Göteborg, Sweden, Available: http://www.skf.com/portal/skf/home (Jun, 1, 2011).
    [56] M. Ouerfelli and V. Kumar, 1994, "Optimization of a Spherical Five-bar Parallel Drive Linkage," Journal of Mechanical Design, 116, pp. 166-173.
    [57] C. M. Gosselin and F. Caron, 1999, "Two Degree-of-Freedom Spherical Orienting Device," US Patent 5966991,
    [58] C.-C. Lan and K.-M. Lee, 2006, "Generalized Shooting Method for Analyzing Compliant Mechanisms with Curved Members," ASME Transaction on Journal of Mechanical Design, 128, pp. 765-775.
    [59] C.-C. Lan and Y.-J. Cheng, 2008, "Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions," ASME Transaction on Journal of Mechanical Design, 130(7), 072304.
    [60] Y.-J. Cheng, 2009. "Shape Design of Compliant Mechanisms Using Bezier Curves," Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    [61] D. R. Jones, M. Schonlau, and W. J. Welch, 1998, "Efficient Global Optimization of Expensive Black-Box Functions," Journal of Global Optimization, 13(4), pp. 455-492.
    [62] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Martí, 2007, "Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization," INFORMS Journal on Computing, 19(3), pp. 328-340.
    [63] ANSYS, Inc., 2011, "Sec 2.2 Modeling Rigid Bodies in a Multibody Analysis, Multibody Analysis Guide, ANSYS 12.1 Help".

    下載圖示 校內:2016-08-22公開
    校外:2016-08-22公開
    QR CODE