簡易檢索 / 詳目顯示

研究生: 林世偉
Lin, Shi-Wei
論文名稱: 創新暗視野螢光激發架構於波長解析之生醫微流體晶片應用
Novel Diascopic Illumination Configuration for Wavelength-resolved Bio-detection in Microfluidic Chips
指導教授: 張志涵
Chang, Chih-Han
共同指導教授: 林哲信
Lin, Che-Hsin
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 85
中文關鍵詞: 毛細管電泳細胞儀螢光多波長偵測波長解析光譜暗視野聚焦
外文關鍵詞: capillary electrophoresis, cytometer, fluorescence, multi-wavelength detection, wavelength-resolved, spectrum, dark-field
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統的微流體系統偵測中,單一螢光偵測技術早已成熟發展並應用於毛細管電泳和流式細胞儀上,其有操作效能較為低落之缺點。為了提升可同時偵測的螢光樣本數量,研究上常以多重管道及多重螢光偵測的方式實現。然而,此類系統需使用較為複雜且精密的光學零組件、多組濾鏡系統和光感測器來提高可偵測的樣本數,而增加系統成本及體積。因此,本研究利用暗視野光源的特性,發展一種簡單且具創新性的光學架構,應用於微流體管道內的生物樣本偵測,藉由多波長激發及多波長量測技術,提高同時可偵測螢光和生物樣品之數目。
    本研究初步驗證暗視野光源在多波長偵測上的可行性,以一商用暗視野聚焦鏡,創造一中空圓錐狀的聚焦光源取代傳統雷射誘導螢光技術。此暗視聚焦光源可有效激發微管道內的螢光分子並避免激發光源進入接收物鏡,配合一紫外-可見光-近紅外線光譜儀做為訊號接收元件,取代原有的濾鏡組件和複雜的控制系統,用以達到多波長多樣本的偵測。研究中採用一連續波長的可見光源做為激發光(400 nm到900 nm),以激發不同激發波長的螢光分子。實驗結果顯示,此暗視野架構成功在單一微管道下同時偵測一包含Atto610、Rhodamine B和FITC三種螢光染劑之混合螢光樣本。除此之外,本系統亦成功分離且同時偵測分別標定Cy3和FITC螢光之單股DNA混合樣本。雖然本研究架構中的偵測極限低於傳統的雷射誘導螢光偵測系統,約為10-5 M(SNR=5.56以FITC濃度為參考),但此系統在平行偵測及多波長解析的潛力卻是值得被注意以及深入探討的。
    有鑑於利用商用暗視野聚焦鏡所聚焦之光源,由於其光點大小和數值孔徑(numerical aperture, N.A.)皆無法任意改變的情況下,用以激發微管道內螢光時,管壁內所產生的大量散射而造成螢光訊噪比低落的缺點。本研究利用一高數值孔徑物鏡和塑膠光罩光擋片,創造出一自製的高效能暗視野聚焦光系統鏡以改善商用暗視野聚光鏡之聚光效果,期能達到較佳的螢光偵測效率。研究中利用實驗找出光擋片設計之最佳參數,以降低管道內散射問題並達到良好的激發效能。螢光量測結果顯示,經最佳化的光擋片可量測到5×10-8 M之螢光染料(SNR=3,以2',7’-dichlorofluorsin,2',7’-DCF濃度做為參考),其效能與利用商用暗視野聚光鏡之架構高出約一百倍。
    將此物鏡式暗視野架構應用於電泳偵測時,顯示出新架構對螢光分子的偵測更為靈敏且有效率。實驗利用一包含2',7’-DCF、Rhodamine B、Atto610和Atto647N之混合螢光樣本進行單一管道之電泳偵測,及使用螢光標定之單股DNA混合樣本,進行系統效能驗證。除此之外,本研究更提出一簡單且快速的計算和分析方式,其可有效對電泳圖譜訊號之雜訊與螢光光譜交互干擾進行濾除,以達到快速解析多樣本之目的。
    最後,將此高效能之暗視野聚光架構應用在流式細胞偵測晶片上,以進行連續流體中的細胞計數,並將所偵測之光譜訊號進行波長解析,進而達到多變數偵測目的以利細胞分類及辨識。本研究利用此光學架構可偵測不同大小和帶有不同螢光的微米小球,依據微米小球在暗視野下的光譜訊號,可將其側向散射、吸收和螢光等參數值計算並量化,並做為細胞分類和辨識的基礎,實驗成功將一混合螢光小球樣本有效分類並計數。此外,本研究亦使用腸道上皮癌細胞做為實際細胞偵測的應用,並將細胞標定上Tripan-blue和Erythrosin-blush等染劑,並成功以所發展出之系統對該樣本進行快速分類與數量統計。
    由以上研究結果中指出,此暗視野偵測架構應用於晶片電泳和流式細胞計數器時,皆表現出其多樣性的偵測潛力,對於微管道內的生物樣本偵測提供一快速且低成本的方法。未來亦可藉由光源系統的變更以及分析計算的精進,將此偵測架構實際應用於生物、醫藥和病理等偵測。

    In the conventional microfluidic system, detection of a single fluorescent is an established technique in capillary electrophoresis (CE) and cytometry applications. In order to increase the throughput in multi-sample detection, multi-lanes and multi-wavelengths systems have been developed. However, delicate optical components and various optical filters and photo-detectors such as photo-multiplier tubes (PMT) make these systems relatively bulky and expensive when increasing the number of detection samples. Therefore, this research presents a simple and novel configuration, composed of dark-field illumination and a spectral detector, to increase detection throughput for multiple bio-detection in a single microfluidic channel.
    In the preliminary experiment, a commercial dark-field condenser is used to demonstrate the wavelength-resolved fluorescence detection for high-throughput analysis of bio-samples in a micro-CE chip. Instead of using a conventional laser-induced-fluorescence microscope equipped with delicate spatial filters and complex control systems, this experiment adopts a dark-field illumination combined with a continuous wavelength light source (400 nm to 900 nm) for exciting fluorescence in a microchannel and an ultraviolet-visible-near infrared (UV-Vis-NIR) spectrometer to detect the emission signals. The proposed system is simple and economical since no sophisticated optical filter sets and laser sources are required for excitation and detection. Experimental results show that the proposed system is feasible for simultaneously detecting a mixed sample composed of Atto610, Rhodamine B and FITC fluorescent dyes in a single test run. Furthermore, a mixed bio-sample composed of two single-strand DNA (ssDNA) samples labeled with Cy3 and FITC fluorescent dyes is also successfully separated and detected with the proposed system. The measured detection limit for detecting FITC fluorescein of the proposed system can be as low as 10^-5 M (SNR = 5.56).
    In order to improve excitation performance and increase the detection limit, an objective-type dark-field technique is developed. The proposed system includes an objective-type dark-field condenser comprised of a high NA objective and light stop-film to excite fluorescence and a UV-Vis-NIR spectrometer via a low NA objective to detect emitted fluorescent signals. An optimized stop-film pattern for obtaining the best fluorescence excitation and reducing scattered light from the channel wall is determined by experimental results. This advanced configuration has a measured detection limit up to 5×10^-8 M (SNR = 3) while detecting a standard fluorescence of 2’,7’-dichlorofluoresein, a limit which is capable of detecting fluorescence samples in general applications.
    In the CE application of this advanced configuration, experimental results show that the proposed system can effectively increase the fluorescent signals and simultaneously detect a mixed sample composed of 2’,7’-dichlorofluoresein, Rhodamine B, Atto610, and Atto647N. Furthermore, this advanced configuration also successfully separates and detects a mixed fluorescence-labeled bio-sample composed of three ssDNA samples in a single channel. In addition, a simple and fast calculation removes scattering noise and spectral cross-effect to obtain reliable electropherograms for analysis.
    In a cytometric application, using the configuration mentioned above, continuous cell counting and spectra analysis are realized in a single channel without using any spatial filters or delicate optical components. Results show that the developed system is capable of identifying different labeled particles and cell samples by extracting the side-scatter, absorption, and fluorescence signals from the information-rich spectra. This proposed detection technique has successfully counted and classified a mixed dummy sample composed of three fluorescence-labeled particles and one non-labeled particle, with sizes from 2 μm to 15 μm. Furthermore, a mixed bio-sample composed of Tripan-blue, Erythrosin-blush, and non-labeled AGS cells (gastric epithelial cells) can be successfully discriminated using this proposed system. Unlike the traditional filter technique, the continuous wavelength measurement enables efficient multi-color detection, identification, and classification for micro-flow cytometer applications. The developed diascopic illumination system will substantially impact the development of high performance CE and micro-flow cytometers using this simple and straightforward technique of spectral detection and analysis.

    中文摘要 I Abstract III 致 謝 V Table of Contents VI List of Figures VIII List of Table XIII Nomenclature XIV Acronyms XVI Chapter 1. Introduction 1 1.1 Motivation 2 1.1.1 Purpose and Specific Aims 3 1.1.2 Research Hypothesis 3 1.1.3 Significance 3 1.2 Thesis organization 4 Chapter 2. Background knowledge and literature reviews 6 2.1 Fluorescent detection 6 2.1.1 Fluorescence principle 6 2.1.2 Light filtration 8 2.2 Capillary electrophoresis detection 11 2.2.1 Absorbance detection 12 2.2.2 Fluorescence detection 13 2.2.3 Others 13 2.3 Cytometric detection 13 2.4 Multiple bio-samples detection in micro-fluid 16 2.4.1 High-throughput detection in CE 16 2.4.2 Multi-color detection in cytometric system 20 2.5 Dark-field illumination 22 Chapter 3. Wavelength-resolved fluorescence CE detection using a commercial dark-field condenser 25 3.1 Experimental section 25 3.1.1 Instrumental setup 25 3.1.2 Chip fabrication 27 3.1.3 Experiments 29 3.2 Results and Discussions 29 Chapter 4. Advanced objective-type dark-field configuration applied to the wavelength-resolved CE detection 37 4.1 Experimental section 38 4.1.1 Design concept 38 4.1.2 Instrumental setup 40 4.1.3 Microchip fabrication 42 4.1.4 Reagents and sample preparation 42 4.1.5 Capillary electrophoresis experiment 42 4.2 Results and discussions 43 4.2.1 Optical performance characterizations 43 4.2.2 Effect of the designed pattern on stop-film 46 4.2.3 Fluorescence detection in capillary electrophoresis 48 Chapter 5. Multispectral analysis for micro-flow cytometry detection using the advanced objective-type dark-field configuration 51 5.1 Experimental section 51 5.1.1 Detection principle and instrumental setup 51 5.1.2 Chip fabrication and experimental method 53 5.1.3 Reagents and bio-sample preparation 55 5.2 Results and discussions 55 5.2.1 Detection in micro-flow cytometer chip 55 5.2.2 Spectral analysis and performance measurement 58 5.2.3 Discrimination for particles and bio-cells 61 Chapter 6. Conclusions 65 6.1 Summary 65 6.2 Limitations and future work 67 Reference 69 Appendix A: Measurement for optimized stop-film parameters 77 Appendix B: Algorithm for signal processing 78 Biography 83

    [1] A. D. Romig, M. T. Dugger, and P. J. McWhorter, “Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability,” Acta Materialia, vol. 51, no. 19, pp. 5837-5866, 2003.
    [2] C. L. Colyer, T. Tang, N. Chiem, and D. J. Harrison, “Clinical potential of microchip capillary electrophoresis systems,” Electrophoresis, vol. 18, no. 10, pp. 1733-1741, 1997.
    [3] A. Manz, D. J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H. Ludi, and H. M. Widmer, “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems - Capillary Electrophoresis on a Chip,” Journal of Chromatography, vol. 593, no. 1-2, pp. 253-258, 1992.
    [4] K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: New ways in bioanalysis,” Analytical Chemistry, vol. 71, no. 23, pp. 5430-5435, 1999.
    [5] T. C. Brelje, M. W. Wessendorf, R. L. Sorenson, and M. Brian, "Chapter 4 Multicolor Laser Scanning Confocal Immunofluorescence Microscopy: Practical Application and Limitations," Methods in Cell Biology, pp. 97-181: Academic Press, 1993.
    [6] A. Waggoner, R. D. Biasio, P. Conrad, G. R. Bright, L. Ernst, K. Ryan, M. Nederlof, D. Taylor, D. L. Taylor, and W. Yu-Li, "Chapter 17 Multiple Spectral Parameter Imaging," Methods in Cell Biology, pp. 449-478: Academic Press, 1989.
    [7] S. v. d. F. P. M. Nederlof, J. Wiegant, A. K. Raap, H. J. Tanke, J. S. Ploem, M. van der Ploeg,, “Multiple fluorescence in situ hybridization,” Cytometry, vol. 11, no. 1, pp. 126-131, 1990.
    [8] T. Ried, A. Baldini, T. C. Rand, and D. C. Ward, “Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 4, pp. 1388-1392, 1992.
    [9] E. K. Lewis, W. C. Haaland, F. Nguyen, D. A. Heller, M. J. Allen, R. R. MacGregor, C. S. Berger, B. Willingham, L. A. Burns, G. B. I. Scott, C. Kittrell, B. R. Johnson, R. F. Curl, and M. L. Metzker, “Color-blind fluorescence detection for four-color DNA sequencing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5346-5351, 2005.
    [10] S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Innovation - Seventeen-colour flow cytometry: unravelling the immune system,” Nature Reviews Immunology, vol. 4, no. 8, pp. 648-U5, 2004.
    [11] S. R. Liu, Q. S. Pu, L. Gao, and J. Lu, “An economic approach for construction of a multiplexed capillary electrophoresis system,” Talanta, vol. 70, no. 3, pp. 644-650, 2006.
    [12] Z. Shen, X. J. Liu, Z. C. Long, D. Y. Liu, N. N. Ye, J. H. Qin, Z. P. Dai, and B. C. Lin, “Parallel analysis of biomolecules on a microfabricated capillary array chip,” Electrophoresis, vol. 27, no. 5-6, pp. 1084-1092, 2006.
    [13] J. Zhang, K. O. Voss, D. F. Shaw, K. P. Roos, D. F. Lewis, J. Yan, R. Jiang, H. Ren, J. Y. Hou, Y. Fang, X. Puyang, H. Ahmadzadeh, and N. J. Dovichi, “A multiple-capillary electrophoresis system for small-scale DNA sequencing and analysis,” Nucl. Acids Res., vol. 27, no. 24, pp. e36-e42, 1999.
    [14] J. M. Karlinsey, and J. P. Landers, “Multicolor fluorescence detection on an electrophoretic microdevice using an acoustooptic tunable filter,” Analytical Chemistry, vol. 78, no. 15, pp. 5590-5596, 2006.
    [15] C. H. Lin, S. K. Hsiung, and G. B. Lee, “High-throughput micro capillary electrophoresis chip for bio-analytical application utilizing multi-wavelength detection,” Micro Electro Mechanical Systems. 17th IEEE International Conference on. (MEMS), pp. 304-307, 2004.
    [16] A. T. Timperman, K. Khatib, and J. V. Sweedler, “Wavelength-Resolved Fluorescence Detection in Capillary Electrophoresis,” Analytical Chemistry, vol. 67, no. 1, pp. 139-144, 1995.
    [17] S. X. Xiong, J. J. Li, and J. K. Cheng, “Multiwavelength fluorescence detection for purity analysis of fluorescence agents using capillary electrophoresis with a charge-coupled device,” Analytica Chimica Acta, vol. 322, no. 3, pp. 187-194, 1996.
    [18] J. W. Lichtman, and J. A. Conchello, “Fluorescence microscopy,” Nature Methods, vol. 2, no. 12, pp. 910-919, 2005.
    [19] R. P. Haugland, M. T. Z. Spence, I. D. Johnson, and A. Basey, The handbook : a guide to fluorescent probes and labeling technologies, 10th ed., Molecular Probes, 2005.
    [20] T. R. Moore, J. B. Redmond, S. J. Frederiksen, G. R. Gray, M. W. Pan, and P. Guernsey, “Thick optical films for use as interference filters,” Surface & Coatings Technology, vol. 99, no. 1-2, pp. 60-68, 1998.
    [21] Y. F. Bao, A. Sneh, K. Hsu, K. M. Johnson, J. Y. Liu, C. M. Miller, Y. Monta, and M. B. McClain, “High-speed liquid crystal fiber Fabry-Perot tunable filter,” Ieee Photonics Technology Letters, vol. 8, no. 9, pp. 1190-1192, 1996.
    [22] J. S. Patel, and M. W. Maeda, “Multiwavelength Tunable Liquid-Crystal Etalon Filter,” Ieee Photonics Technology Letters, vol. 3, no. 7, pp. 643-644, 1991.
    [23] J. M. Karlinsey, and J. P. Landers, “AOTF-based multicolor fluorescence detection for short tandem repeat (STR) analysis in an electrophoretic microdevice,” Lab on a Chip, vol. 8, no. 8, pp. 1285-1291, 2008.
    [24] Y. Yuan, J. Y. Hwang, M. Krishnamoorthy, K. T. Ye, Y. Zhang, J. Ning, R. C. Wang, M. J. Deen, and Q. Y. Fang, “High-throughput acousto-optic-tunable-filter-based time-resolved fluorescence spectrometer for optical biopsy,” Optics Letters, vol. 34, no. 7, pp. 1132-1134, 2009.
    [25] G. Ocvirk, T. Tang, and D. J. Harrison, “Optimization of confocal epifluorescence microscopy for microchip-based miniaturized total analysis systems,” Analyst, vol. 123, no. 7, pp. 1429-1434, 1998.
    [26] G. F. Jiang, S. Attiya, G. Ocvirk, W. E. Lee, and D. J. Harrison, “Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis,” Biosensors & Bioelectronics, vol. 14, no. 10-11, pp. 861-869, 2000.
    [27] J. C. Fister, S. C. Jacobson, L. M. Davis, and J. M. Ramsey, “Counting single chromophore molecules for ultrasensitive analysis and separations on microchip devices,” Analytical Chemistry, vol. 70, no. 3, pp. 431-437, 1998.
    [28] B. B. Haab, and R. A. Mathies, “Single-molecule detection of DNA separations in microfabricated capillary electrophoresis chips employing focused molecular streams,” Analytical Chemistry, vol. 71, no. 22, pp. 5137-5145, 1999.
    [29] D. A. Skoog, Fundamentals of analytical chemistry, 8th ed., Belmont, CA: Thomson-Brooks/Cole, 2004.
    [30] T.-R. Hsu, MEMS and microsystems : design and manufacture, Boston: McGraw-Hill, 2002.
    [31] K. Lim, S. Kim, and J. H. Hahn, “Enhanced UV-visible absorbance detection in capillary electrophoresis using modified T-shaped post-column flow cell,” Bulletin of the Korean Chemical Society, vol. 23, no. 2, pp. 295-300, 2002.
    [32] G. Hempel, “Strategies to improve the sensitivity in capillary electrophoresis for the analysis of drugs in biological fluids,” Electrophoresis, vol. 21, no. 4, pp. 691-698, 2000.
    [33] C. M. Boone, J. C. M. Waterval, H. Lingeman, K. Ensing, and W. J. M. Underberg, “Capillary electrophoresis as a versatile tool for the bioanalysis of drugs - a review,” Journal of Pharmaceutical and Biomedical Analysis, vol. 20, no. 6, pp. 831-863, 1999.
    [34] R. D. Smith, J. A. Olivares, N. T. Nguyen, and H. R. Udseth, “Capillary Zone Electrophoresis Mass-Spectrometry Using an Electrospray Ionization Interface,” Analytical Chemistry, vol. 60, no. 5, pp. 436-441, 1988.
    [35] T. D. Chung, and H. C. Kim, “Recent advances in miniaturized microfluidic flow cytometry for clinical use,” Electrophoresis, vol. 28, no. 24, pp. 4511-4520, 2007.
    [36] M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey, “Microfluidic devices for the high-throughput chemical analysis of cells,” Analytical Chemistry, vol. 75, no. 21, pp. 5646-5655, 2003.
    [37] J. H. Nieuwenhuis, J. Bastemeijer, P. M. Sarro, and M. J. Vellekoop, “Integrated flow-cells for novel adjustable sheath flows,” Lab on a Chip, vol. 3, no. 2, pp. 56-61, 2003.
    [38] Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab on a Chip, vol. 4, no. 4, pp. 372-377, 2004.
    [39] C. M. Chang, S. K. Hsiung, and G. B. Lee, “Micro flow cytometer chip integrated with micro-pumps/micro-valves for multi-wavelength cell counting and sorting,” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, no. 5A, pp. 3126-3134, 2007.
    [40] Y. C. Tung, Y. S. Torisawa, N. Futai, and S. Takayama, “Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics,” Lab on a Chip, vol. 7, no. 11, pp. 1497-1503, 2007.
    [41] T. Kawamata, M. Yamada, M. Yasuda, and M. Seki, “Continuous and precise particle separation by electroosmotic flow control in microfluidic devices,” Electrophoresis, vol. 29, no. 7, pp. 1423-1430, 2008.
    [42] R. J. Yang, C. C. Chang, S. B. Huang, and G. B. Lee, “A new focusing model and switching approach for electrokinetic flow inside microchannels,” Journal of Micromechanics and Microengineering, vol. 15, no. 11, pp. 2141-2148, 2005.
    [43] G. R. Goddard, C. K. Sanders, J. C. Martin, G. Kaduchak, and S. W. Graves, “Analytical performance of an ultrasonic particle focusing flow cytometer,” Analytical Chemistry, vol. 79, no. 22, pp. 8740-8746, 2007.
    [44] N. Demierre, T. Braschler, R. Muller, and P. Renaud, “Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis,” Sensors and Actuators B-Chemical, vol. 132, no. 2, pp. 388-396, 2008.
    [45] D. Holmes, H. Morgan, and N. G. Green, “High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection,” Biosensors & Bioelectronics, vol. 21, no. 8, pp. 1621-1630, 2006.
    [46] D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Analytical and Bioanalytical Chemistry, vol. 391, no. 5, pp. 1485-1498, 2008.
    [47] D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. I. Experimental results,” Applied Optics, vol. 39, no. 27, pp. 5023-5030, 2000.
    [48] G. Videen, W. B. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Applied Optics, vol. 39, no. 27, pp. 5031-5039, 2000.
    [49] A. G. Hoekstra, R. M. P. Doornbos, K. E. I. Deurloo, H. J. Noordmans, B. G. Degrooth, and P. M. A. Sloot, “Another Face of Lorenz-Mie Scattering - Monodisperse Distributions of Spheres Produce Lissajous-Like Patterns,” Applied Optics, vol. 33, no. 3, pp. 494-500, 1994.
    [50] M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Applied Optics, vol. 47, no. 5, pp. 678-686, 2008.
    [51] X. D. Zhou, D. P. Poenar, K. Y. Liu, M. S. Tse, C. K. Heng, and S. N. Tan, “Design of MEMS devices with optical apertures for the detection of transparent biological cells,” Biomedical Microdevices, vol. 10, no. 5, pp. 639-652, 2008.
    [52] C. H. Lin, and G. B. Lee, “Micromachined flow cytometers with embedded etched optic fibers for optical detection,” Journal of Micromechanics and Microengineering, vol. 13, no. 3, pp. 447-453, 2003.
    [53] G. B. Lee, C. H. Lin, and G. L. Chang, “Micro flow cytometers with buried SU-8/SOG optical waveguides,” Sensors and Actuators a-Physical, vol. 103, no. 1-2, pp. 165-170, 2003.
    [54] X. T. Su, K. Singh, C. Capjack, J. Petracek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” Journal of Biomedical Optics, vol. 13, no. 2, pp. 024024.1-10, 2008.
    [55] D. J. Knuteson, N. B. Singh, M. Gottlieb, D. Suhre, N. Gupta, A. E. Berghmans, D. A. Kahler, B. Wagner, and J. Hawkins, “Crystal growth, fabrication, and design of mercurous bromide acousto-optic tunable filters,” Optical Engineering, vol. 46, no. 6, pp. 064001.1-6, 2007.
    [56] K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry Part A, vol. 69A, no. 4, pp. 307-315, 2006.
    [57] D. Andreyev, and E. A. Arriaga, “Simultaneous laser-induced fluorescence and scattering detection of individual particles separated by capillary electrophoresis,” Analytical Chemistry, vol. 79, no. 14, pp. 5474-5478, 2007.
    [58] J. A. Steinkamp, R. C. Habbersett, and R. D. Hiebert, “Improved Multilaser Multiparameter Flow Cytometer for Analysis and Sorting of Cells and Particles,” Review of Scientific Instruments, vol. 62, no. 11, pp. 2751-2764, 1991.
    [59] G. J. M. Bruin, “Recent developments in electrokinetically driven analysis on microfabricated devices,” Electrophoresis, vol. 21, no. 18, pp. 3931-3951, 2000.
    [60] A. G. Ewing, R. A. Wallingford, and T. M. Olefirowicz, “Capillary Electrophoresis,” Analytical Chemistry, vol. 61, no. 4, pp. A292-A303, 1989.
    [61] C. A. Monnig, and R. T. Kennedy, “Capillary Electrophoresis,” Analytical Chemistry, vol. 66, no. 12, pp. R280-R314, 1994.
    [62] J. A. Taylor, and E. A. Yeung, “Multiplexed Fluorescence Detector for Capillary Electrophoresis Using Axial Optical Fiber Illumination,” Analytical Chemistry, vol. 65, no. 7, pp. 956-960, 1993.
    [63] E. T. Bergstrom, D. M. Goodall, B. Pokric, and N. M. Allinson, “A charge coupled device array detector for single-wavelength and multiwavelength ultraviolet absorbance in capillary electrophoresis,” Analytical Chemistry, vol. 71, no. 19, pp. 4376-4384, 1999.
    [64] S. Gotz, and U. Karst, “Wavelength-resolved fluorescence detector for microchip capillary electrophoresis separations,” Sensors and Actuators B: Chemical, vol. 123, no. 1, pp. 622-627, 2007.
    [65] S. Takahashi, K. Murakami, T. Anazawa, and H. Kambara, “Multiple Sheath-Flow Gel Capillary-Array Electrophoresis for Multicolor Fluorescent DNA Detection,” Analytical Chemistry, vol. 66, no. 7, pp. 1021-1026, 1994.
    [66] Z. L. Huang, L. J. Jin, J. C. Sanders, Y. B. Zheng, C. Dunsmoor, H. J. Tian, and J. P. Landers, “Laser-induced fluorescence detection on multichannel electrophoretic microchips using microprocessor-embedded acousto-optic laser beam scanning,” Ieee Transactions on Biomedical Engineering, vol. 49, no. 8, pp. 859-866, 2002.
    [67] S. Iyer, P. Stark, and J. Olivares, “Two-Color Capillary Electrophoresis with On-Column Excitation and Wave-Guide Based Fluorescent Detection,” Journal of the Association for Laboratory Automation, vol. 8, no. 4, pp. 41-45, 2003.
    [68] S. K. Hsiung, C. H. Lin, and G. B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection,” Electrophoresis, vol. 26, no. 6, pp. 1122-1129, 2005.
    [69] X. Zhang, J. N. Stuart, and J. V. Sweedler, “Capillary electrophoresis with wavelength-resolved laser-induced fluorescence detection,” Analytical and Bioanalytical Chemistry, vol. 373, no. 6, pp. 332-343, 2002.
    [70] L. Zhang, H. Chen, S. Hu, J. Cheng, Z. W. Li, and M. Shao, “Determination of the amino acid neurotransmitters in the dorsal root ganglion of the rat by capillary electrophoresis with a laser-induced fluorescence-charge coupled device,” Journal of Chromatography B, vol. 707, no. 1-2, pp. 59-67, 1998.
    [71] S. J. Kok, E. M. Kristenson, C. Gooijer, N. H. Velthorst, and U. A. T. Brinkman, “Wavelength-resolved laser-induced fluorescence detection in capillary electrophoresis: Naphthalenesulphonates in river water,” Journal of Chromatography A, vol. 771, no. 1-2, pp. 331-341, 1997.
    [72] L. Alaverdian, S. Alaverdian, O. Bilenko, I. Bogdanov, E. Filippova, D. Gavrilov, B. Gorbovitski, M. Gouzman, G. Gudkov, S. Domratchev, O. Kosobokova, N. Lifshitz, S. Luryi, V. Ruskovoloshin, A. Stepoukhovitch, M. Tcherevishnick, G. Tyshko, and V. Gorfinkel, “A family of novel DNA sequencing instruments based on single-photon detection,” Electrophoresis, vol. 23, no. 16, pp. 2804-2817, 2002.
    [73] Y. J. Hu, L. L. Fan, J. E. Zheng, R. Cui, W. Liu, Y. L. He, X. Li, and S. Huang, “Detection of Circulating Tumor Cells in Breast Cancer Patients Utilizing Multiparameter Flow Cytometry and Assessment of the Prognosis of Patients in Different CTCs Levels,” Cytometry Part A, vol. 77A, no. 3, pp. 213-219, 2010.
    [74] M. Roederer, J. M. Brenchley, M. R. Betts, and S. C. De Rosa, “Flow cytometric analysis of vaccine responses: how many colors are enough?,” Clinical Immunology, vol. 110, no. 3, pp. 199-205, 2004.
    [75] H. Y. Zhang, and H. Sun, “Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer,” Cancer Letters, vol. 287, no. 1, pp. 91-97, 2010.
    [76] J. Lee, I. S. Kim, and H. W. Yu, “Flow Cytometric Detection of Bacillus spoOA Gene in Biofilm Using Quantum Dot Labeling,” Analytical Chemistry, vol. 82, no. 7, pp. 2836-2843, 2010.
    [77] M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow cytometry of Escherichia coli on nucrifluidic devices,” Analytical Chemistry, vol. 73, no. 21, pp. 5334-5338, 2001.
    [78] J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, “Multiplexed Detection of Bacteria and Toxins Using a Microflow Cytometer,” Analytical Chemistry, vol. 81, no. 13, pp. 5426-5432, 2009.
    [79] H. M. Shapiro, “Multiparameter flow cytometry of bacteria: Implications for diagnostics and therapeutics,” Cytometry, vol. 43, no. 3, pp. 223-226, 2001.
    [80] S. Y. Zheng, M. S. Nandra, C. Y. Shih, W. Li, and Y. C. Tai, “Resonance impedance sensing of human blood cells,” Sensors and Actuators a-Physical, vol. 145, pp. 29-36, 2008.
    [81] S. Y. Zheng, J. C. H. Lin, H. L. Kasdan, and Y. C. Tai, “Fluorescent labeling, sensing, and differentiation of leukocytes from undiluted whole blood samples,” Sensors and Actuators B-Chemical, vol. 132, no. 2, pp. 558-567, 2008.
    [82] D. Y. Orlova, M. A. Yurkin, A. G. Hoekstra, and V. P. Maltsev, “Light scattering by neutrophils: model, simulation, and experiment,” Journal of Biomedical Optics, vol. 13, no. 5, pp. 054057.1-7, 2008.
    [83] A. Mathur, and D. M. Kelso, “Multispectral Image Analysis of Binary Encoded Microspheres for Highly Multiplexed Suspension Arrays,” Cytometry Part A, vol. 77A, no. 4, pp. 356-365, 2010.
    [84] Z. Darzynkiewicz, E. Bedner, X. Li, W. Gorczyca, and M. R. Melamed, “Laser-scanning cytometry: A new instrumentation with many applications,” Experimental Cell Research, vol. 249, no. 1, pp. 1-12, 1999.
    [85] A. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry, vol. 36, no. 1, pp. 36-45, 1999.
    [86] J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab on a Chip, vol. 9, no. 13, pp. 1942-1950, 2009.
    [87] Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sensors and Actuators B-Chemical, vol. 98, no. 2-3, pp. 356-367, 2004.
    [88] D. Isailovic, H. W. Li, G. J. Phillips, and E. S. Yeung, “High-throughput single-cell fluorescence spectroscopy,” Applied Spectroscopy, vol. 59, no. 2, pp. 221-226, 2005.
    [89] G. B. J. Dubelaar, P. L. Gerritzen, A. E. R. Beeker, R. R. Jonker, and K. Tangen, “Design and first results of CytoBuoy: A wireless flow cytometer for in situ analysis of marine and fresh waters,” Cytometry, vol. 37, no. 4, pp. 247-254, 1999.
    [90] M. Sunamura, A. Maruyama, T. Tsuji, and R. Kurane, “Spectral imaging detection and counting of microbial cells in marine sediment,” Journal of Microbiological Methods, vol. 53, no. 1, pp. 57-65, 2003.
    [91] G. Goddard, J. C. Martin, M. Naivar, P. M. Goodwin, S. W. Graves, R. Habbersett, J. P. Nolan, and J. H. Jett, “Single particle high resolution spectral analysis flow cytometry,” Cytometry Part A, vol. 69A, no. 8, pp. 842-851, 2006.
    [92] B. C. Ferrari, and P. L. Bergquist, “Quantum dots as alternatives to organic fluorophores for Cryptosporidium detection using conventional flow cytometry and specific monoclonal antibodies: Lessons learned,” Cytometry Part A, vol. 71A, no. 4, pp. 265-271, 2007.
    [93] P. K. Chattopadhyay, D. A. Price, T. F. Harper, M. R. Betts, J. Yu, E. Gostick, S. P. Perfetto, P. Goepfert, R. A. Koup, S. C. De Rosa, M. P. Bruchez, and M. Roederer, “Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry,” Nature Medicine, vol. 12, no. 8, pp. 972-977, 2006.
    [94] D. A. Watson, L. O. Brown, D. R. Gaskill, M. Naivar, S. W. Graves, S. K. Doorn, and J. P. Nolan, “A flow cytometer for the measurement of Raman spectra,” Cytometry Part A, vol. 73A, no. 2, pp. 119-128, 2008.
    [95] P. Torok, Z. Laczik, and C. J. R. Sheppard, “Effect of half-stop lateral misalignment on imaging of dark-field and stereoscopic confocal microscopes,” Applied Optics, vol. 35, no. 34, pp. 6732-6739, 1996.
    [96] P. Torok, Z. Laczik, and J. N. Skepper, “Simple modification of a commercial scanning laser microscope to incorporate dark-field imaging,” Journal of Microscopy-Oxford, vol. 181, pp. 260-268, 1996.
    [97] N. Noda, and S. Kamimura, “A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement,” Review of Scientific Instruments, vol. 79, no. 2, pp. -, 2008.
    [98] M. Lei, and B. L. Yao, “Multifunctional darkfield microscopy using an axicon,” Journal of Biomedical Optics, vol. 13, no. 4, pp. -, 2008.
    [99] A. Curry, W. L. Hwang, and A. Wax, “Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture,” Optics Express, vol. 14, no. 14, pp. 6535-6542, 2006.
    [100] D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Applied Optics, vol. 45, no. 3, pp. 470-479, 2006.
    [101] S. Kimura, and T. Wilson, “Confocal Scanning Dark-Field Polarization Microscopy,” Applied Optics, vol. 33, no. 7, pp. 1274-1278, 1994.
    [102] N. Wei, J. You, K. Friehs, E. Flaschel, and T. W. Nattkemper, “In situ dark field microscopy for on-line monitoring of yeast cultures,” Biotechnology Letters, vol. 29, no. 3, pp. 373-378, 2007.
    [103] I. Braslavsky, R. Amit, B. M. J. Ali, O. Gileadi, A. Oppenheim, and J. Stavans, “Objective-type dark-field illumination for scattering from microbeads,” Applied Optics, vol. 40, no. 31, pp. 5650-5657, 2001.
    [104] Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Letters, vol. 7, no. 3, pp. 690-696, 2007.
    [105] C. Sonnichsen, and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Letters, vol. 5, no. 2, pp. 301-304, 2005.
    [106] A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy,” Optics Express, vol. 13, no. 7, pp. 2668-2677, 2005.
    [107] J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,” Analytical Chemistry, vol. 74, no. 14, pp. 3400-3407, 2002.
    [108] J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” Journal of Microelectromechanical Systems, vol. 10, no. 4, pp. 482-491, 2001.
    [109] J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Microlens systems for fluorescence detection in chemical microsystems,” Optical Engineering, vol. 40, no. 5, pp. 814-821, 2001.
    [110] C. H. Lin, G. B. Lee, Y. H. Lin, and G. L. Chang, “A fast prototyping process for fabrication of microfluidic systems on soda-lime glass,” Journal of Micromechanics and Microengineering, vol. 11, no. 6, pp. 726-732, 2001.
    [111] C. H. Lin, R. J. Yang, C. H. Tai, C. Y. Lee, and L. M. Fu, “Double-L injection technique for high performance capillary electrophoresis detection in microfluidic chips,” Journal of Micromechanics and Microengineering, vol. 14, no. 4, pp. 639-646, 2004.
    [112] S. Bradbury, and B. Bracegirdle, Introduction to light microscopy, New York: Springer, 1997.
    [113] C. H. Lin, G. B. Lee, L. M. Fu, and S. H. Chen, “Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification,” Biosensors & Bioelectronics, vol. 20, no. 1, pp. 83-90, 2004.
    [114] S. Götz, and U. Karst, “Wavelength-resolved fluorescence detector for microchip capillary electrophoresis separations,” Sensors and Actuators B: Chemical, vol. 123, no. 1, pp. 622-627, 2007.
    [115] K. Rebner, M. Schmitz, B. Boldrini, A. Kienle, D. Oelkrug, and R. W. Kessler, “Dark-field scattering microscopy for spectral characterization of polystyrene aggregates,” Optics Express, vol. 18, no. 3, pp. 3116-3127, 2010.
    [116] C. I. Hung, B. J. Ke, G. R. Huang, B. H. Hwei, H. F. Lai, and G. B. Lee, “Hydrodynamic focusing for a micromachined flow cytometer,” Journal of Fluids Engineering-Transactions of the Asme, vol. 123, no. 3, pp. 672-679, 2001.

    下載圖示 校內:2011-09-01公開
    校外:2011-09-01公開
    QR CODE