| 研究生: |
黃國珍 Huang, Kao-Jean |
|---|---|
| 論文名稱: |
登革病毒感染:抗體依靠性增強與自體抗體相關的致病機轉 Dengue Virus Infection: Antibody Dependent Enhancement and Autoantibody-associated Pathogenesis |
| 指導教授: |
黎煥耀
Lei, Huan-Yao |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 登革病毒 、致病機轉 、自體抗體 |
| 外文關鍵詞: | pathogenesis, autoantibody, dengue virus |
| 相關次數: | 點閱:75 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
登革病毒,一種再度威脅人類的病原體,在全世界的熱帶和亞熱帶感染會造成登革熱的流行。它的傳播是透過埃及斑蚊或白線斑蚊所媒介傳染的,目前世界上有四種登革病毒血清類型(dengue l-4)。它所造成的疾病包括輕症的登革熱(Dengue fever)和嚴重致死的登革出血熱/登革休克症候群(Dengue hemorrhagic fever/ Dengue shock syndrome, DHF/DSS)。DHF/DSS的兩個重要特徵是血小板低下(thrombocytopenia)和血管壁的通透性增加使血漿外流(plasma leakage)。然而造成DHF/DSS的機制仍未明朗。由Dr. Halstead所提出的抗體依靠性增強作用(antibody-dependent enhancement, ADE)假說已主導登革研究與疫苗發展數十年,雖然解釋並連結了體外ADE現象和登革病毒感染造成DHF/DSS患者在流行病學上年齡雙高峰期(bimodal)的現象,然而參與出血過程的因子仍未被明確的確認。病毒感染造成免疫的不當反應,包括T細胞的活化,CD4/CD8的比例在感染後6-10天下降再回升(CD4/CD8 ratio inversion)和有CD69分子的表現在CD4或CD8細胞上。Immature neutrophils、monocytosis和atypical lymphocytosis的出現表示這些細胞在前期的大量破壞與後期的再生。PHA無法有效活化急性期病人PBMC的T細胞增生可能是和血液裡的單核球細胞減少有關。登革出血熱的幼童、嬰兒和成年人的血清分析含有大量的細胞激素表現(IL-6、IFN-g)。IL-6的表現先於IFN-g而IFN-g的表現又先於IL-10。為了研究DHF/DSS的免疫治病機轉,我們發展登革病毒感染A/J小鼠的模式,登革病毒基因可在小鼠感染後第二天的血液和2-3個星期後的腦和肝被偵測到。在這些組織中可分離出具感染力的病毒顆粒。最特別的是被登革病毒感染的小鼠不論是在初級感染或是次級感染都會有低血小板(thrombocytopenia)的現象,且抗血小板抗體(IgG及IgM兩類的抗體)可在小鼠感染早期的第四天被誘發。此外在急性期的DHF小孩血液裏的單核球細胞群(PBMC)被檢驗出有登革病毒抗原的表現。單核球細胞長久以來被認為是登革病毒感染的目標細胞並且在ADE上扮演重要角色。我們設立了以流式細胞儀分析法來定量被登革病毒感染的細胞,並用此方法研究ADE的機制。這方法可匹配傳統量測ADE的病毒斑試驗,但是更為方便、精準和省時。實驗顯示當人類B淋巴瘤細胞(BJAB)和周邊血單核球細胞(PBMC)在有稀釋的登革病患血清存在下被登革病毒感染會有ADE的現象發生。用小鼠製造出的登革單株抗體來研究ADE,結果顯示結構性蛋白的單株抗體(anti-E or anti-prM mAbs)的單株抗體,而非其他非結構性蛋白的單株抗體(anti-NS1 mAb),會依抗體的濃度增強登革病毒感染帶有Fcg受器的細胞,例如P388D1、DC2.4 and K562。ADE的作用是倚賴完整的免疫球蛋白和目標細胞表面上表現的Fcg接受器。令人驚訝的是anti-prM的抗體較能夠增加病毒感染B融合瘤細胞和不帶有Fcg受器的細胞,例如BHK和A549細胞。Anti-prM抗體所認得的抗原決定位(epitope)是位於prM胺基酸序列的第53-67且靠近prM/M切割位附近稱為M3的胺基酸序列,這胺基酸序列可專一性地阻斷anti-prM抗體所主導的ADE作用。臨床登革病人血清檢體含有anti-M3的抗體並且證明能參與ADE的作用。Anti-prM抗體能增強病毒感染不帶有Fcg受器細胞的機制是anti-prM抗體結合到BHK或A549細胞上的自體抗原將登革病毒拉近至病毒受器,因而增加登革病毒的感染。分子模擬(molecular mimicry)的機制可能參與登革病毒的感染,病人血清中可偵測到抗血小板抗體與抗內皮細胞抗體。測試從登革病毒感染小鼠製造出的單株抗體結合血小板和內皮細胞的能力。大多數抗血小板抗體會和登革病毒NS1抗原有交互作用,有些anti-NS1、anti-E和anti-prM抗體會和內皮細胞有交互作用。在有補體或活化的細胞存在時,可能會有補體活化細胞毒殺(complement-mediated cellular cytotoxicity)和抗體依靠性細胞吞噬作用(antibody-dependent cellular phagocytosis)。能被anti-prM抗體辨認且可能是自體抗原候選蛋白之一的heat shock protein 60 (HSP60),能在BHK、A549和內皮細胞上被確認。總括來說,登革病毒在二次感染時透過ADE作用會感染大量的細胞,被感染的細胞會釋放大量的病毒抗原刺激免疫系統來產生抗登革病毒抗體和高量的細胞激素,如IL-6、IFN-g,透過分子模擬的機制,所增加的抗登革病毒抗體會結合到表現在血小板、內皮細胞甚至是淋巴球上的自體抗原。在不適當的免疫反應下,活化的淋巴球細胞會釋放大量的細胞激素而活化單核球細胞和噬中性球。活化的吞噬細胞可能會吞噬或使被抗體結合的細胞功能失常,因而造成血小板低下(thrombocytopenia)和血管壁的通透性增加使血漿外流(plasma leakage)。這個自體抗體相關的致病機轉(autoantibody-associated pathogenesis)整合了ADE理論、T細胞活化反應、細胞激素流(cytokine storming)、巨噬細胞活化反應和自體免疫,而成為DHF的免疫致病機轉的基礎和提供未來登革疫苗發展的指引。
Dengue virus, a re-emerging infectious agent, may cause endemic dengue fever in tropical and sub-tropical region worldwide. Its transmission was relied on the domestic mosquito, Ades egypti or Ades albopictus, and there are four dengue serotypes existing in the world. The disease spectrum after dengue virus infection includes self-limited dengue fever (DF) and more complicated forms as dengue hemorrhagic fever or dengue shock syndrome (DHF/DSS). Two important characteristics of severe DHF/DSS are thrombocytopenia and plasma leakage (hemorrhage), but the mechanism underlying DHF/DSS remains elusive. The antibody-dependent enhancement (ADE) hypothesis proposed by Dr. Halstead has governed the dengue research and vaccine development for many years. Although this theory explains the linking of the in vitro ADE effect and the bimodal age-incidence pattern of DHF/DSS, the factors participating in the hemorrhagic process are not identified yet. The aberrant immune status of dengue patients was evident with the transient CD4/CD8 ratio inversion at day 6-10 after fever onset and the expression of early activation marker, CD69 on both CD4 and CD8 cells. The appearance of bandemia, monocytosis and atypical lymphocytosis reflects the early depletion of these blood cells and the later hematopoietic generation of them. The impairment of PHA-stimulated T lymphocyte proliferation at the acute stage was correlated with the deficiency of monocytes in the peripheral blood. Massive cytokine production, such as IL-6 and IFN-g were detectable in the sera of patients from DHF children, DHF infants and DHF adults. The IL-6 expression was earlier than IFN-g, which was followed by IL-10. In order to investigate the immunopathogenesis of DHF/DSS, we developed a murine model for dengue infection in A/J mice. Dengue viral genomes could be detected in the blood (day 2) and the tissues of brain and liver (week 2 or 3) post dengue virus infection. Infectious viral particles were reisolated from those tissues. Interestingly, this murine model will develop transient thrombocytopenia in either primary or secondary infection. The anti-platelet antibodies (both IgM and IgG isotypes) were induced as early as day 4 post-infection. Furthermore, dengue viral antigens could be detected in the peripheral blood mononuclear cells (PBMCs) of DHF children at the acute stage. Monocytes have long been thought as an important target for dengue virus and play a role in the ADE phenomenon. A flow cytometric method was established for the quantification of dengue virus-infected cells and was applied to study the ADE mechanisms. This method was comparable to the conventional plaque assay method, but with more simple, accuracy and timesaving. The ADE phenomenon was demonstrated when B cell line (BJAB) or primary PBMCs were infected by dengue in the presence of diluted dengue immune serum. Anti-dengue monoclonal antibodies (mAbs) generated from dengue 2 virus-infected mice were used to study the ADE effect. Anti-dengue structure mAbs (anti-E or anti-prM mAbs), not anti-non-structure mAb (anti-NS1 mAb), were capable of enhancing dengue virus infection dose-dependently on the Fcg receptor-bearing cells, including P388D1, DC2.4 and K562. This ADE effect depends on the presence of whole anti-dengue immunoglobulins and the expression of the Fcg receptors on target cells. Surprisingly, anti-prM not anti-E mAb preferentially enhance dengue virus infection of B hybridomas and the cells without Fcg receptors, such as BHK and A549. The epitope peptide recognized by anti-prM mAb was mapped as M3, which is located at the a.a.53-67 of the prM protein nearby the prM/M cleavage junction. This M3 peptide could specifically block the anti-prM Ab-mediated ADE effect in a dose dependent manner. The anti-M3 human antibodies were detected in clinical dengue patient sera and could also mediate the ADE infection. The mechanism of anti-prM mAb mediated- ADE effect on non-Fcg R cells was that the anti-prM mAbs bind to BHK or A549 cell surface membrane proteins and bridge the viruses to the putative dengue virus receptors, thus enhancing dengue virus infection. Molecular mimicry mechanism may participate in dengue virus infection, and anti-platelet or anti-endothelial cell autoantibodies have been detected in dengue patients’ sera. Monoclonal antibodies from dengue virus- infected mice could also bind to platelets or endothelial cells. Most anti-platelet mAbs (with different platelet-binding profile) cross-react to dengue viral NS1 antigens, and some anti-NS1, anti-E and anti-prM mAbs cross-react to endothelial cells or lymphocytes. In the presence of complement or activated monocytes, these mAbs may mediate complement-dependent cytotoxicity or antibody-dependent cellular phagocytosis. One autoantigen candidate, heat shock protein 60 (HSP60), for anti-prM mAb was identified on the surface of BHK, A549 and endothelial cells. Collectively, dengue virus can infect more cells in secondary infection by the ADE effect, and infected cells will release more viral antigens to stimulate the immune system to produce more anti-dengue antibodies as well as the high level cytokines, such as IL-6, IFN-g. By the molecular mimicry mechanism, the increased anti-dengue antibodies (anti-E, anti-prM or anti-NS1 antibodies) will cross-react with self-antigens expressed on platelets, endothelial cells or even lymphocytes. In the aberrant immune response, activated lymphocytes will secret lots of cytokines, which may activate monocytes and polymorphonuclear (PMN) cells. Activated phagocytes might engulf or impair the antibody-bound cells and then cause thrombocytopenia and plasma leakage. This autoantibody -associated pathogenic mechanism integrating the ADE theory, activated T cell responses, cytokine storming, macrophage activation responses and autoimmunity will be the basis of DHF immunopathogenesis and provide a guide for future dengue vaccine development.
1. Agarwal R., Elbishbishi E. A., Chaturvedi U. C., Nagar R. and Mustafa A. S. (1999) Profile of transforming growth factor-beta 1 in patients with dengue haemorrhagic fever. Int J Exp Pathol 80, 143-9.
2. Alvarez C. P., Lasala F., Carrillo J., Muniz O., Corbi A. L. and Delgado R. (2002) C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol 76, 6841-4.
3. An J., Kimura-Kuroda J., Hirabayashi Y. and Yasui K. (1999) Development of a novel mouse model for dengue virus infection. Virology 263, 70-7.
4. Anderson R., Wang S., Osiowy C. and Issekutz A. C. (1997) Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol 71, 4226-32.
5. Anonymous. (1997) Dengue haemorrhagic fever diagnosis, treatment, prevention and control. World Health Organization, Geneva.
6. Avirutnan P., Malasit P., Seliger B., Bhakdi S. and Husmann M. (1998) Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol 161, 6338-46.
7. Bason C., Corrocher R., Lunardi C., Puccetti P., Olivieri O., Girelli D., Navone R., Beri R., Millo E., Margonato A., Martinelli N. and Puccetti A. (2003) Interaction of antibodies against cytomegalovirus with heat-shock protein 60 in pathogenesis of atherosclerosis. Lancet 362, 1971-7.
8. Benarroch D., Egloff M. P., Mulard L., Guerreiro C., Romette J. L. and Canard B. (2004a) A structural basis for the inhibition of the NS5 dengue virus mRNA 2'-O-methyltransferase domain by ribavirin 5'-triphosphate. J Biol Chem 279, 35638-43.
9. Benarroch D., Selisko B., Locatelli G. A., Maga G., Romette J. L. and Canard B. (2004b) The RNA helicase, nucleotide 5'-triphosphatase, and RNA 5'-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208-18.
10. Bethell D. B., Flobbe K., Cao X. T., Day N. P., Pham T. P., Buurman W. A., Cardosa M. J., White N. J. and Kwiatkowski D. (1998) Pathophysiologic and prognostic role of cytokines in dengue hemorrhagic fever. J Infect Dis 177, 778-82.
11. Bhamarapravati N. (1989) Hemostatic defects in dengue hemorrhagic fever. Rev Infect Dis 11 Suppl 4, S826-9.
12. Bhamarapravati N. (1997) Dengue and Dengue Hemorrhagic Fever. In CAB International (Edited by D.J. G. and Kuno G.), p. 115-132, New York.
13. Bielefeldt-Ohmann H. (1998) Analysis of antibody-independent binding of dengue viruses and dengue virus envelope protein to human myelomonocytic cells and B lymphocytes. Virus Res 57, 63-79.
14. Bokisch V. A., Top F. H., Jr., Russell P. K., Dixon F. J. and Muller-Eberhard H. J. (1973) The potential pathogenic role of complement in dengue hemorrhagic shock syndrome. N Engl J Med 289, 996-1000.
15. Boonpucknavig S., Vuttiviroj O., Bunnag C., Bhamarapravati N. and Nimmanitya S. (1979) Demonstration of dengue antibody complexes on the surface of platelets from patients with dengue hemorrhagic fever. Am J Trop Med Hyg 28, 881-4.
16. Butthep P., Bunyaratvej A. and Bhamarapravati N. (1993) Dengue virus and endothelial cell: a related phenomenon to thrombocytopenia and granulocytopenia in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health 24 Suppl 1, 246-9.
17. Cardosa M. J., Porterfield J. S. and Gordon S. (1983) Complement receptor mediates enhanced flavivirus replication in macrophages. J Exp Med 158, 258-63.
18. Chambers T. J., Hahn C. S. and Galler R. (1990) Flavivirus genome organization, expression and replication. Annu Rev Microbiol 44, 649-688.
19. Chang C. J., Luh H. W., Wang S. H., Lin H. J., Lee S. C. and Hu S. T. (2001) The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol 20, 569-77.
20. Chang D. M. and Shaio M. F. (1994) Production of interleukin-1 (IL-1) and IL-1 inhibitor by human monocytes exposed to dengue virus. J Infect Dis 170, 811-7.
21. Chen H. C., Lai S. Y., Sung J. M., Lee S. H., Lin Y. C., Wang W. K., Chen Y. C., Kao C. L., King C. C. and Wu-Hsieh B. A. (2004) Lymphocyte activation and hepatic cellular infiltration in immunocompetent mice infected by dengue virus. J Med Virol 73, 419-31.
22. Chen Y., Maguire T., Hileman R. E., Fromm J. R., Esko J. D., Linhardt R. J. and Marks R. M. (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3, 866-71.
23. Chungue E., Poli L., Roche C., Gestas P., Glaziou P. and Markoff L. J. (1994) Correlation between detection of plasminogen cross-reactive antibodies and hemorrhage in dengue virus infection. J Infect Dis 170, 1304-7.
24. Cologna R. and Rico-Hesse R. (2003) American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J Virol 77, 3929-38.
25. Dieude M., Senecal J. L. and Raymond Y. (2004) Induction of endothelial cell apoptosis by heat-shock protein 60-reactive antibodies from anti-endothelial cell autoantibody-positive systemic lupus erythematosus patients. Arthritis Rheum 50, 3221-31.
26. Egloff M. P., Benarroch D., Selisko B., Romette J. L. and Canard B. (2002) An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Embo J 21, 2757-68.
27. Espina L. M., Valero N. J., Hernandez J. M. and Mosquera J. A. (2003) Increased apoptosis and expression of tumor necrosis factor-alpha caused by infection of cultured human monocytes with dengue virus. Am J Trop Med Hyg 68, 48-53.
28. Esumi N., Ikushima S., Hibi S., Todo S. and Imashuku S. (1988) High serum ferritin level as a marker of malignant histiocytosis and virus-associated hemophagocytic syndrome. Cancer 61, 2071-6.
29. Falconar A. K. (1997) The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol 142, 897-916.
30. Falkler W. A., Jr., Diwan A. R. and Halstead S. B. (1973) Human antibody to dengue soluble complement-fixing (SCF) antigens. J Immunol 111, 1804-9.
31. Forwood J. K., Brooks A., Briggs L. J., Xiao C. Y., Jans D. A. and Vasudevan S. G. (1999) The 37-amino-acid interdomain of dengue virus NS5 protein contains a functional NLS and inhibitory CK2 site. Biochem Biophys Res Commun 257, 731-7.
32. Gagnon S. J., Ennis F. A. and Rothman A. L. (1999) Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. J Virol 73, 3623-9.
33. Geijtenbeek T. B., Kwon D. S., Torensma R., van Vliet S. J., van Duijnhoven G. C., Middel J., Cornelissen I. L., Nottet H. S., KewalRamani V. N., Littman D. R., Figdor C. G. and van Kooyk Y. (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587-97.
34. Germi R., Crance J. M., Garin D., Guimet J., Lortat-Jacob H., Ruigrok R. W., Zarski J. P. and Drouet E. (2002) Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292, 162-8.
35. Green S., Kurane I., Edelman R., Tacket C. O., Eckels K. H., Vaughn D. W., Hoke C. H., Jr. and Ennis F. A. (1993) Dengue virus-specific human CD4+ T-lymphocyte responses in a recipient of an experimental live-attenuated dengue virus type 1 vaccine: bulk culture proliferation, clonal analysis, and precursor frequency determination. J Virol 67, 5962-7.
36. Green S., Pichyangkul S., Vaughn D. W., Kalayanarooj S., Nimmannitya S., Nisalak A., Kurane I., Rothman A. L. and Ennis F. A. (1999a) Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. J Infect Dis 180, 1429-35.
37. Green S., Vaughn D. W., Kalayanarooj S., Nimmannitya S., Suntayakorn S., Nisalak A., Lew R., Innis B. L., Kurane I., Rothman A. L. and Ennis F. A. (1999b) Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. J Infect Dis 179, 755-62.
38. Green S., Vaughn D. W., Kalayanarooj S., Nimmannitya S., Suntayakorn S., Nisalak A., Rothman A. L. and Ennis F. A. (1999c) Elevated plasma interleukin-10 levels in acute dengue correlate with disease severity. J Med Virol 59, 329-34.
39. Gubler D. J. (1997) Dengue and dengue haemorrhagic fever: its history and resurgence as a global public health problem. In CAB international (Edited by Gubler D. J. and Kuno G.), p. 1-22, New York.
40. Gubler D. J., Reed D., Rosen L. and Hitchcock J. R., Jr. (1978) Epidemiologic, clinical, and virologic observations on dengue in the Kingdom of Tonga. Am J Trop Med Hyg 27, 581-9.
41. Gubler D. J., Suharyono W., Lubis I., Eram S. and Sulianti Saroso J. (1979) Epidemic dengue hemorrhagic fever in rural Indonesia. I. Virological and epidemiological studies. Am J Trop Med Hyg 28, 701-10.
42. Guzman M. G., Kouri G., Valdes L., Bravo J., Alvarez M., Vazques S., Delgado I. and Halstead S. B. (2000) Epidemiologic studies on Dengue in Santiago de Cuba, 1997. Am J Epidemiol 152, 793-9; discussion 804.
43. Guzman M. G., Kouri G. P., Bravo J., Soler M., Vazquez S. and Morier L. (1990) Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am J Trop Med Hyg 42, 179-84.
44. Halary F., Amara A., Lortat-Jacob H., Messerle M., Delaunay T., Houles C., Fieschi F., Arenzana-Seisdedos F., Moreau J. F. and Dechanet-Merville J. (2002) Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17, 653-64.
45. Hall W. C., Crowell T. P., Watts D. M., Barros V. L. R., Kruger B., Pinheiro F. and Peters C. J. (1991) Demonstration of yellowfever and dengue antigens in formalin-fixed parafin-embedded human liver by immunohistochemical analysis. Am J Trop Med Hyg 45, 408-417.
46. Halstead S. B. (1979) In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis 140, 527-33.
Halstead S. B. (1981) The Alexander D. Langmuir Lecture. The pathogenesis of dengue. Molecular epidemiology in infectious disease. Am J Epidemiol 114, 632-48.
47. Halstead S. B. (1989) Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev Infect Dis 11 Suppl 4, S830-9.
48. Halstead S. B. (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60, 421-67.
49. Halstead S. B., Marchette N. J., Sung Chow J. S. and Lolekha S. (1976) Dengue virus replication enhancement in peripheral blood leukocytes from immune human beings. Proc Soc Exp Biol Med 151, 136-9.
50. Halstead S. B., Rojanasuphot S. and Sangkawibha N. (1983) Original antigenic sin in dengue. Am J Trop Med Hyg 32, 154-6.
51. Halstead S. B., Shotwell H. and Casals J. (1973a) Studies on the pathogenesis of dengue infection in monkeys. I. Clinical laboratory responses to primary infection. J Infect Dis 128, 7-14.
52. Halstead S. B., Shotwell H. and Casals J. (1973b) Studies on the pathogenesis of dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection. J Infect Dis 128, 15-22.
53. Halstead S. B., Udomsakdi S., Singharaj P. and Nisalak A. (1969) Dengue chikungunya virus infection in man in Thailand, 1962-1964. 3. Clinical, epidemiologic, and virologic observations on disease in non-indigenous white persons. Am J Trop Med Hyg 18, 984-96.
54. Hathirat P., Isarangkura P., Srichaikul T., Suvatte V. and Mitrakul C. (1993) Abnormal hemostasis in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health 24 Suppl 1, 80-5.
55. Hawkes R. A. (1964) Enhancement of the infectivity of arboviruses by specific antisera produced in domestic fowls. Australian Journal of Experimental Biology and Medical Science 42, 456-82.
56. Hawkes R. A. (1967) The enhancement of virus infectivity by antibody. Virology 33, 250-61.
57. Henchal E. A. and Putnak J. R. (1990) The dengue viruses. Clin Microbiol Rev 3, 376-96.
58. Ho L. J., Wang J. J., Shaio M. F., Kao C. L., Chang D. M., Han S. W. and Lai J. H. (2001) Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol 166, 1499-506.
59. Hober D., Delannoy A. S., Benyoucef S., De Groote D. and Wattre P. (1996a) High levels of sTNFR p75 and TNF alpha in dengue-infected patients. Microbiol Immunol 40, 569-73.
60. Hober D., Poli L., Roblin B., Gestas P., Chungue E., Granic G., Imbert P., Pecarere J. L., Vergez-Pascal R., Wattre P. and et al. (1993) Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am J Trop Med Hyg 48, 324-31.
61. Hober D., Shen L., Benyoucef S., De Groote D., Deubel V. and Wattre P. (1996b) Enhanceed TNF-a production by monocytic-like cells exposed to dengue virus antigens. Immunol Lett 53, 115-120.
62. Hotta H., Murakami I., Miyasaki K., Takeda Y., Shirane H. and Hotta S. (1981) Inoculation of dengue virus into nude mice. J Gen Virol 52, 71-6.
63. Huang K. J., Li S. Y., Chen S. C., Liu H. S., Lin Y. S., Yeh T. M., Liu C. C. and Lei H. Y. (2000a) Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J Gen Virol 81, 2177-82.
64. Huang Y. H., Chang B. I., Lei H. Y., Liu H. S., Liu C. C., Wu H. L. and Yeh T. M. (1997) Antibodies against dengue virus E protein peptide bind to human plasminogen and inhibit plasmin activity. Clin Exp Immunol 110, 35-40.
65. Huang Y. H., Lei H. Y., Liu H. S., Lin Y. S., Liu C. C. and Yeh T. M. (2000b) Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg 63, 71-5.
66. Hung N. T., Lan N. T., Lei H. Y., Lin Y. S., Lien L. B., Huang K. J., Lin C. F., Ha D. Q., Huong V. T., My L. T., Yeh T. M., Huang J. H., Liu C. C. and Halstead S. B. (2005) Association between Sex, Nutritional Status, Severity of Dengue Hemorrhagic Fever, and Immune Status in Infants with Dengue Hemorrhagic Fever. Am J Trop Med Hyg 72, 370-374.
67. Hurlimann-Forster M., Steiner B. and von Felten A. (1997) Quantitation of platelet-specific autoantibodies in platelet eluates of ITP patients measured by a novel ELISA using the purified glycoprotein complexes GPIIb/IIIa and GPIb/IX as antigens. Br J Haematol 98, 328-35.
68. Jacobs M. G., Robinson P. J., Bletchly C., Mackenzie J. M. and Young P. R. (2000) Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. Faseb J 14, 1603-10.
69. Jessie K., Fong M. Y., Devi S., Lam S. K. and Wong K. T. (2004) Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189, 1411-8.
70. Jindadamrongwech S., Thepparit C. and Smith D. R. (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149, 915-27.
71. Johnson A. J. and Roehrig J. T. (1999) New mouse model for dengue virus vaccine testing. J Virol 73, 783-6.
72. Juffrie M., van Der Meer G. M., Hack C. E., Haasnoot K., Sutaryo, Veerman A. J. and Thijs L. G. (2000) Inflammatory mediators in dengue virus infection in children: interleukin-8 and its relationship to neutrophil degranulation. Infect Immun 68, 702-7.
73. King A. D., Nisalak A., Kalayanrooj S., Myint K. S., Pattanapanyasat K., Nimmannitya S. and Innis B. L. (1999) B cells are the principal circulating mononuclear cells infected by dengue virus. Southeast Asian J Trop Med Public Health 30, 718-28.
74. Kliks S. C., Nimmanitya S., Nisalak A. and Burke D. S. (1988) Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 38, 411-9.
75. Kobayashi K., Blaser M. J. and Brown W. R. (1989) Identification of a unique IgG Fc binding site in human intestinal epithelium. J Immunol 143, 2567-74.
76. Kontny U., Kurane I. and Ennis F. A. (1988) Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells. J Virol 62, 3928-33.
77. Koraka P., Murgue B., Deparis X., Van Gorp E. C., Setiati T. E., Osterhaus A. D. and Groen J. (2004) Elevation of soluble VCAM-1 plasma levels in children with acute dengue virus infection of varying severity. J Med Virol 72, 445-50.
78. Kraiselburd E. (1987) Dengue virus vaccine studies in Puerto Rico: a review. P R Health Sci J 6, 27-9.
79. Krishnamurti C., Peat R. A., Cutting M. A. and Rothwell S. W. (2002) Platelet adhesion to dengue-2 virus-infected endothelial cells. Am J Trop Med Hyg 66, 435-41.
80. Kurane I., Brinton M. A., Samson A. L. and Ennis F. A. (1991a) Dengue virus-specific, human CD4+ CD8- cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones. J Virol 65, 1823-8.
81. Kurane I. and Ennis F. A. (1997) Dengue and Dengue hemorrhagic fecer. In CBA International (Edited by Gubler D. J. and Kuno G.), p. 273-290, New York.
Kurane I., Innis B. L., Nimmannitya S., Nisalak A., Meager A., Janus J. and Ennis F. A. (1991b) Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. J Clin Invest 88, 1473-80.
82. Kurane I., Innis B. L., Nisalak A., Hoke C., Nimmannitya S., Meager A. and Ennis F. A. (1989a) Human T cell responses to dengue virus antigens. Proliferative responses and interferon gamma production. J Clin Invest 83, 506-13.
83. Kurane I., Kontny U., Janus J. and Ennis F. A. (1990) Dengue-2 virus infection of human mononuclear cell lines and establishment of persistent infections. Arch Virol 110, 91-101.
84. Kurane I., Meager A. and Ennis F. A. (1989b) Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity. J Exp Med 170, 763-75.
85. Kurane I., Zeng L., Brinton M. A. and Ennis F. A. (1998) Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross-reactive for dengue virus types 2, 3, and 4. Virology 240, 169-74.
86. Laur F., Murgue B., Deparis X., Roche C., Cassar O. and Chungue E. (1998) Plasma levels of tumour necrosis factor alpha and transforming growth factor beta-1 in children with dengue 2 virus infection in French Polynesia. Trans R Soc Trop Med Hyg 92, 654-6.
87. Lee J. M., Crooks A. J. and Stephenson J. R. (1989) The synthesis and maturation of a non-structural extracellular antigen from tick-bone encephalitis virus and its relationship to the intracellular NS1 protein. J Gen Virol 70, 335-343.
88. Lei H. Y., Yeh T. M., Liu H. S., Lin Y. S., Chen S. H. and Liu C. C. (2001) Immunopathogenesis of dengue virus infection. J Biomed Sci 8, 377-88.
89. Libraty D. H., Endy T. P., Houng H. S., Green S., Kalayanarooj S., Suntayakorn S., Chansiriwongs W., Vaughn D. W., Nisalak A., Ennis F. A. and Rothman A. L. (2002) Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis 185, 1213-21.
90. Lidbury B. A. and Mahalingam S. (2000) Specific ablation of antiviral gene expression in macrophages by antibody-dependent enhancement of Ross River virus infection. J Virol 74, 8376-81.
91. Lin C. F., Lei H. Y., Liu C. C., Liu H. S., Yeh T. M., Wang S. T., Yang T. I., Sheu F. C., Kuo C. F. and Lin Y. S. (2001) Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol 63, 143-9.
92. Lin C. F., Lei H. Y., Shiau A. L., Liu C. C., Liu H. S., Yeh T. M., Chen S. H. and Lin Y. S. (2003) Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol 69, 82-90.
93. Lin C. F., Lei H. Y., Shiau A. L., Liu H. S., Yeh T. M., Chen S. H., Liu C. C., Chiu S. C. and Lin Y. S. (2002a) Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol 169, 657-64.
94. Lin R. J., Liao C. L., Lin E. and Lin Y. L. (2004) Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection. J Virol 78, 9285-94.
95. Lin Y. L., Liao C. L., Chen L. K., Yeh C. T., Liu C. I., Ma S. H., Huang Y. Y., Huang Y. L., Kao C. L. and King C. C. (1998) Study of Dengue virus infection in SCID mice engrafted with human K562 cells. J Virol 72, 9729-37.
96. Lin Y. L., Liu C. C., Chuang J. I., Lei H. Y., Yeh T. M., Lin Y. S., Huang Y. H. and Liu H. S. (2000) Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. Virology 276, 114-26.
97. Lin Y. W., Wang K. J., Lei H. Y., Lin Y. S., Yeh T. M., Liu H. S., Liu C. C. and Chen S. H. (2002b) Virus replication and cytokine production in dengue virus-infected human B lymphocytes. J Virol 76, 12242-9.
98. Liu C. C., Huang K. J., Lin Y. S., Yeh T. M., Liu H. S. and Lei H. Y. (2002) Transient CD4/CD8 ratio inversion and aberrant immune activation during dengue virus infection. J Med Virol 68, 241-52.
99. Lobigs M., Arthur C. E., Mullbacher A. and Blanden R. V. (1994) The flavivirus nonstructural protein NS3 is a dominant source of cytotoxic T cell peptide determinants. Virology 202, 195-201.
100. Lozach P. Y., Lortat-Jacob H., de Lacroix de Lavalette A., Staropoli I., Foung S., Amara A., Houles C., Fieschi F., Schwartz O., Virelizier J. L., Arenzana-Seisdedos F. and Altmeyer R. (2003) DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 278, 20358-66.
101. Lum L. C. S., Lam S. K., George R. and Devi S. (1993) Fulminant hepatitis in dengue infection. Southeast Asian J Trop Med Public Health 24, 467-471.
102. Mady B. J., Erbe D. V., Kurane I., Fanger M. W. and Ennis F. A. (1991) Antibody-dependent enhancement of dengue virus infection mediated by bispecific antibodies against cell surface molecules other than Fc gamma receptors. J Immunol 147, 3139-44.
103. Mahalingam S. and Lidbury B. A. (2002) Suppression of lipopolysaccharide-induced antiviral transcription factor (STAT-1 and NF-kappa B) complexes by antibody-dependent enhancement of macrophage infection by Ross River virus. Proc Natl Acad Sci U S A 99, 13819-24.
104. Malasit P. (1987) Complement and dengue haemorrhagic fever/shock syndrome. Southeast Asian J Trop Med Public Health 18, 316-320.
105. Mandl C. W., Heinz F. X. and Kunz C. (1989) Genome sequence of tick-borne encephalitis virus (western subtype) and comparative analysis of nonstructure proteins with other flaviviruses. Virology 173, 291-301.
106. Markoff L. J., Innis B. L., Houghton R. and Henchal L. S. (1991) Development of cross-reactive antibodies to plasminogen during the immune response to dengue virus infection. J Infect Dis 164, 294-301.
107. Martinez-Barragan J. J. and del Angel R. M. (2001) Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J Virol 75, 7818-27.
108. Mathew A., Kurane I., Green S., Vaughn D. W., Kalayanarooj S., Suntayakorn S., Ennis F. A. and Rothman A. L. (1999) Impaired T cell proliferation in acute dengue infection. J Immunol 162, 5609-15.
109. Mathew A., Kurane I., Rothman A. L., Zeng L. L., Brinton M. A. and Ennis F. A. (1996) Dominant recognition by human CD8+ cytotoxic T lymphocytes of dengue virus nonstructural proteins NS3 and NS1.2a. J Clin Invest 98, 1684-91.
110. Megret F., Hugnot J. P., Falconar A., Gentry M. K., Morens D. M., Murray J. M., Schlesinger J. J., Wright P. J., Young P., Van Regenmortel M. H. and et al. (1992) Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue virus envelope glycoprotein. Virology 187, 480-91.
111. Meiklejohn G., England B. and Lennette. (1952) Propagation of dengue virus strains in unweaned mice. Am J Trop Med Hyg 1, 51-8.
Mogensen S. C. (1979) Role of macrophages in natural resistance to virus infections. Microbiol Rev 43, 1-26.
112. Monath T. P. and Heinz F. X. (1996) Flaviviruses. In Fields Virology, (Edited by Fields B. N., Knipe D. M. and Howley P. M.), p. 961-1034. Philadelphia: Lippincott & Raven.
113. Mongkolsapaya J., Dejnirattisai W., Xu X. N., Vasanawathana S., Tangthawornchaikul N., Chairunsri A., Sawasdivorn S., Duangchinda T., Dong T., Rowland-Jones S., Yenchitsomanus P. T., McMichael A., Malasit P. and Screaton G. (2003) Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9, 921-7.
114. Monnin M. and M'Bou F. (2005) [An epidemic of dengue fever in a department of paediatrics: report on 58 cases in Lamentin (Martinique).]. Arch Pediatr 12, 144-50.
115. Moreno-Altamirano M. M., Sanchez-Garcia F. J. and Munoz M. L. (2002) Non Fc receptor-mediated infection of human macrophages by dengue virus serotype 2. J Gen Virol 83, 1123-30.
116. Morens D. M. (1994) Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis 19, 500-12.
Munoz-Jordan J. L., Sanchez-Burgos G. G., Laurent-Rolle M. and Garcia-Sastre A. (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 100, 14333-8.
117. Murgue B., Cassar O. and Deparis X. (2001) Plasma concentrations of sVCAM-1 and severity of dengue infections. J Med Virol 65, 97-104.
118. Mustafa A. S., Elbishbishi E. A., Agarwal R. and Chaturvedi U. C. (2001) Elevated levels of interleukin-13 and IL-18 in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol 30, 229-33.
119. Nardi M. A., Liu L. X. and Karpatkin S. (1997) GPIIIa-(49-66) is a major pathophysiologically relevant antigenic determinant for anti-platelet GPIIIa of HIV-1-related immunologic thrombocytopenia. Proc Natl Acad Sci U S A 94, 7589-94.
120. Navarro-Sanchez E., Altmeyer R., Amara A., Schwartz O., Fieschi F., Virelizier J. L., Arenzana-Seisdedos F. and Despres P. (2003) Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4, 723-8.
121. Ohga S., Matsuzaki A., Nishizaki M., Nagashima T., Kai T., Suda M. and Ueda K. (1993) Inflammatory cytokines in virus-associated hemophagocytic syndrome. Interferon-gamma as a sensitive indicator of disease activity. Am J Pediatr Hematol Oncol 15, 291-8.
122. Oldstone M. B. (1998) Molecular mimicry and immune-mediated diseases. Faseb J 12, 1255-65.
123. Perez A. B., Garcia G., Sierra B., Alvarez M., Vazquez S., Cabrera M. V., Rodriguez R., Rosario D., Martinez E., Denny T. and Guzman M. G. (2004) IL-10 levels in Dengue patients: some findings from the exceptional epidemiological conditions in Cuba. J Med Virol 73, 230-4.
124. Pfister G., Stroh C. M., Perschinka H., Kind M., Knoflach M., Hinterdorfer P. and Wick G. (2005) Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 118, 1587-94.
125. Porterfield J. S. (1986) Antibody-dependent enhancement of viral infectivity. Adv Virus Res 31, 335-55.
126. Preeyasombat C., Bunnag P., Sirinavin S., Mahachoklertwattana P. and Sriphrapradang A. (1990) Plasma prostacyclin (PGI2) in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health 21, 383-7.
127. Raghupathy R., Chaturvedi U. C., Al-Sayer H., Elbishbishi E. A., Agarwal R., Nagar R., Kapoor S., Misra A., Mathur A., Nusrat H., Azizieh F., Khan M. A. and Mustafa A. S. (1998) Elevated levels of IL-8 in dengue hemorrhagic fever. J Med Virol 56, 280-5.
128. Randolph V. B., Winkler G. and Stollar V. (1990) Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 174, 450-8.
Raut C. G., Deolankar R. P., Kolhapure R. M. and Goverdhan M. K. (1996) Susceptibility of laboratory-bred rodents to the experimental infection with dengue virus type 2. Acta Virol 40, 143-6.
129. Reyes-Del Valle J., Chavez-Salinas S., Medina F. and Del Angel R. M. (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79, 4557-67.
130. Rice C. M. and Lindenbach B. D. (2001) Flavivirus. In Fields Virology (Edited by D.M. K. and Howley P. M.), p. 991-1042. Philadelphia: Lippincott & Raven.
131. Rigau-Perez J. G. (1998) The early use of break-bone fever (Quebranta huesos, 1771) and dengue (1801) in Spanish. Am J Trop Med Hyg 59, 272-4.
132. Roehrig J. T., Bolin R. A. and Kelly R. G. (1998) Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246, 317-28.
133. Roehrig J. T., Johnson A. J., Hunt A. R., Bolin R. A. and Chu M. C. (1990) Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology 177, 668-75.
134. Rosen L. (1977) The Emperor's New Clothes revisited, or reflections on the pathogenesis of dengue hemorrhagic fever. Am J Trop Med Hyg 26, 337-43.
135. Rosen L., Drouet M. T. and Deubel V. (1999) Detection of dengue virus RNA by reverse transcription-polymerase chain reaction in the liver and lymphoid organs but not in the brain in fatal human infection. Am J Trop Med Hyg 61, 720-4.
136. Rothman A. L. and Ennis F. A. (1999) Immunopathogenesis of Dengue hemorrhagic fever. Virology 257, 1-6.
137. Rothwell S. W., Putnak R. and La Russa V. F. (1996) Dengue-2 virus infection of human bone marrow: characterization of dengue-2 antigen-positive stromal cells. Am J Trop Med Hyg 54, 503-10.
138. Ruangjirachuporn W., Boonpucknavig S. and Nimmanitya S. (1979) Circulating immune complexes in serum from patients with dengue haemorrhagic fever. Clin Exp Immunol 36, 46-53.
139. Rueda E., Mendez A. and Gonzalez G. (2002) [Hemophagocytic syndrome associated with dengue hemorrhagic fever]. Biomedica 22, 160-6.
Sabin A. B. (1952) Research on dengue during World War II. Am J Trop Med Hyg 1, 30-50.
140. Salas-Benito J. S. and del Angel R. M. (1997) Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 71, 7246-52.
141. Schett G., Xu Q., Amberger A., Van der Zee R., Recheis H., Willeit J. and Wick G. (1995) Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest 96, 2569-77.
142. Schlesinger J. J., Brandriss M. W. and Walsh E. E. (1987) Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol 68 ( Pt 3), 853-7.
143. Scott R. M., Nisalak A., CheamuDon U., Seridoranakul S. and Nimmanitya S. (1978) A preliminary report on the isolation of viruses from the platelets and leukocytes of dengue patients. Asian J Infect Dis 2, 95-98.
144. Scott R. M., Nisalak A., Cheamudon U., Seridoranakul S. and Nimmanitya S. (1980) Isolation of dengue viruses from peripheral blood leukocytes of patients with hemorrhagic fever. J Infect Dis 141, 1-6.
145. Se-Thoe S. Y., Ng M. M. and Ling A. E. (1999) Retrospective study of Western blot profiles in immune sera of natural dengue virus infections. J Med Virol 57, 322-30.
146. Shaio M. F., Cheng S. N., Yuh Y. S. and Yang K. D. (1995) Cytotoxic factors released by dengue virus-infected human blood monocytes. J Med Virol 46, 216-23.
147. Shresta S., Kyle J. L., Robert Beatty P. and Harris E. (2004a) Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice. Virology 319, 262-73.
148. Shresta S., Kyle J. L., Snider H. M., Basavapatna M., Beatty P. R. and Harris E. (2004b) Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78, 2701-10.
149. Simmons C. P., Dong T., Chau N. V., Dung N. T., Chau T. N., Thao le T. T., Hien T. T., Rowland-Jones S. and Farrar J. (2005) Early T-cell responses to dengue virus epitopes in vietnamese adults with secondary dengue virus infections. J Virol 79, 5665-75.
150. Sobel A. T., Bokisch V. A. and Muller-Eberhard H. J. (1975) C1q deviation test for the detection of immune complexes, aggregates of IgG, and bacterial products in human serum. J Exp Med 142, 139-150.
151. Solomon T., Dung N. M., Vaughn D. W., Kneen R., Thao L. T., Raengsakulrach B., Loan H. T., Day N. P., Farrar J., Myint K. S., Warrell M. J., James W. S., Nisalak A. and White N. J. (2000) Neurological manifestations of dengue infection. Lancet 355, 1053-9.
152. Takada A. and Kawaoka Y. (2003) Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 13, 387-98.
153. Tan B. H., Fu J., Sugrue R. J., Yap E. H., Chan Y. C. and Tan Y. H. (1996) Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology 216, 317-25.
154. Tassaneetrithep B., Burgess T. H., Granelli-Piperno A., Trumpfheller C., Finke J., Sun W., Eller M. A., Pattanapanyasat K., Sarasombath S., Birx D. L.,
Steinman R. M., Schlesinger S. and Marovich M. A. (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197, 823-9.
155. Theofilopoulos A. N., Wilson C. B. and Dixon F. J. (1976) The Raji cell radioimmune assay for detecting immune complexes in human sera. J Clin Invest 57, 169-82.
156. Thepparit C. and Smith D. R. (2004) Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78, 12647-56.
157. Thijs L. G., Hack C. E., Strack van Schijndel R. J. M., Nuijens J. H., Wolbink G. J., Eerenberg-Belmer A. J. M., van der Vall H. and Wagstaff J. (1990) Activation of the complement system during immunotherapy with recombinant IL-2. Relation to the development of side effects. J Immunol 144, 2419-2424.
158. Valero N., Espina L. M., Anez G., Torres E. and Mosquera J. A. (2002) Short report: increased level of serum nitric oxide in patients with dengue. Am J Trop Med Hyg 66, 762-4.
159. Veerakul G., Sanpakit K., Tanphaichitr V. S., Mahasandana C. and Jirarattanasopa N. (2002) Secondary hemophagocytic lymphohistiocytosis in children: an analysis of etiology and outcome. J Med Assoc Thai 85 Suppl 2, S530-41.
160. Wang S., He R. and Anderson R. (1999) PrM- and cell-binding domains of the dengue virus E protein. J Virol 73, 2547-51.
161. Wang S., He R., Patarapotikul J., Innis B. L. and Anderson R. (1995) Antibody-enhanced binding of dengue-2 virus to human platelets. Virology 213, 254-7.
162. Watts D. M., Porter K. R., Putvatana P., Vasquez B., Calampa C., Hayes C. G. and Halstead S. B. (1999) Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet 354, 1431-4.
163. Wei H. Y., Jiang L. F., Fang D. Y. and Guo H. Y. (2003) Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell surface polypeptides. J Gen Virol 84, 3095-8.
164. WHO. (1973) Pathogenetic mechanisms in dengue haemorrhagic fever: report of an international collaborative study. Bull World Health Organ 48, 117-33.
165. Wick G. (2000) Atherosclerosis--an autoimmune disease due to an immune reaction against heat-shock protein 60. Herz 25, 87-90.
166. Winkler G., Maxwell S. E., Ruemmler C. and Stollar V. (1989) Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization. Virology 171, 302-5.
167. Winkler G., Randolph V. B., Cleaves G. R., Ryan T. E. and Stollar V. (1988) Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology 162, 187-96.
168. Wong K. F., Chan J. K., Chan J. C., Lim W. W. and Wong W. K. (1991) Dengue virus infection-associated hemophagocytic syndrome. Am J Hematol 38, 339-40.
169. Wu S. J., Grouard-Vogel G., Sun W., Mascola J. R., Brachtel E., Putvatana R., Louder M. K., Filgueira L., Marovich M. A., Wong H. K., Blauvelt A., Murphy G. S., Robb M. L., Innes B. L., Birx D. L., Hayes C. G. and Frankel S. S. (2000) Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6, 816-20.
170. Wu S. J., Hayes C. G., Dubois D. R., Windheuser M. G., Kang Y. H., Watts D. M. and Sieckmann D. G. (1995) Evaluation of the severe combined immunodeficient (SCID) mouse as an animal model for dengue viral infection. Am J Trop Med Hyg 52, 468-76.
171. Xu Q., Schett G., Seitz C. S., Hu Y., Gupta R. S. and Wick G. (1994) Surface staining and cytotoxic activity of heat-shock protein 60 antibody in stressed aortic endothelial cells. Circ Res 75, 1078-85.
172. Yang K. D., Lee C. S., Hwang K. P., Chu M. L. and Shaio M. F. (1995a) A model to study cytokine profiles in primary and heterologously secondary Dengue-2 virus infections. Acta Virol 39, 19-21.
173. Yang K. D., Lee C. S. and Shaio M. F. (1995b) A higher production of platelet activating factor in ex vivo heterologously secondary dengue-2 virus infections. Acta Microbiol Immunol Hung 42, 403-7.
174. Yang K. D., Wang C. L. and Shaio M. F. (1995c) Production of cytokines and platelet activating factor in secondary dengue virus infections. J Infect Dis 172, 604-5.
175. Yang K. D., Yeh W. T., Yang M. Y., Chen R. F. and Shaio M. F. (2001) Antibody-dependent enhancement of heterotypic dengue infections involved in suppression of IFNgamma production. J Med Virol 63, 150-7.
176. Zhang Y., Corver J., Chipman P. R., Zhang W., Pletnev S. V., Sedlak D., Baker T. S., Strauss J. H., Kuhn R. J. and Rossmann M. G. (2003) Structures of immature flavivirus particles. Embo J 22, 2604-13.
177. Zhang Y., Zhang W., Ogata S., Clements D., Strauss J. H., Baker T. S., Kuhn R. J. and Rossmann M. G. (2004) Conformational changes of the flavivirus E glycoprotein. Structure (Camb) 12, 1607-18.
178. Zivny J., Kurane I., Leporati A. M., Ibe M., Takiguchi M., Zeng L. L., Brinton M. A. and Ennis F. A. (1995) A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities. J Exp Med 182, 853-63.