| 研究生: |
曾德昌 Tseng, Te-Chang |
|---|---|
| 論文名稱: |
新型菱狀流道之微混合器設計與元件製作 Design and fabrication of a novel micromixer with the rhombic microchannel |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 微混合器 |
| 外文關鍵詞: | micromixer |
| 相關次數: | 點閱:54 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究的目標乃設計一被動式微型混合器,並且利用熱流數值模擬軟體(CFD-ACE+)模擬計算流場之狀態,以供預測微型混合器效率之參考。其主要設計理念,以十字型側壁注入方式並改變主流道結構為菱形流道,並在最後菱形流道會合處置入一漸縮噴嘴。混合流體在菱形流道轉角處與漸縮噴嘴出口處產生渦流現象以及兩兩菱形凸塊間之菱形流道匯流處造成擠壓等現象,因而藉此產生混合效果。
製程中,採用SU-8厚膜光阻以微影製程在矽晶圓上製作微型混合器之母模;再以聚二甲基矽氧烷(polydimethysiloxane,PDMS)為材料,翻模製作微型混合器,並處以微波氧電漿表面處理進行接合。最後,檢測混合效率的方式則是用影像軟體分析流道中不同位置之灰階色值,以判定其混合效果。
對於本研究所設計之微型混合器的主要參數為:菱形數目、菱形尖端之間距與菱形流道寬度比、菱形尖端夾角與噴嘴置入與否,然後改變各種變數對此微型混合器混合效率之影響。根據模擬與實驗之結果,可以發現菱形凸塊數目乃是對於混合效果的最大因素。而當縮小尺寸至主流道為100 μm時,其混合效果皆可達到原本較大尺寸之效果,故推論本微型混合器不管做大尺寸或小尺寸皆有達到低於0.1的標準差值。
This thesis investigates a passive micromixer for its better efficiency in mixing by tuning the structures of microfluidic channels with rhombi, side injection and nozzle. Furthermore, in order to understand the situation of flows, we use the software “Computational Fluid Dynamics Research Corporation (CFDRC)” to simulate the mixing states.
During fabrication, SU-8 thick film photoresist is used to fabricate the mold of the micromixers on the silicon wafer by photolithography. Then, we transferred the mold structure of the micromixer to polydimethysiloxane (PDMS), and bond it with a cover layer of PDMS. The mixing performance was then demonstrated with an image analyzing software to quantify the gray value distribution in the exit section.
The aomainant parameters for the mixing mechanism of the micromixer are the number of diamonds, the angle of the sides of the diamond, the ratio of the wavelength of the diamond to the width of the microfluidic channels, and the effect on nozzle. Then, the effects of those variables on the mixing efficiency of the micromixer were compared. According to the numerical simulation and the experimental results, the number of diamonds and the nozzle play the main roles of mixing efficiency. It also shows that the mixing index of 500 μm of the main microchannel and 100 μm of the main microchannel are similar. It may be concluded that the mixing efficiency of a micromixer is independent with the size of the micro-channel.
1.行政院,“挑戰2008:國家發展重點計畫 ( 2002~2007 ) ”.
2.徐文祥,微機電系統技術與應用, 第一章, 民國92年.
3.Y.K. Lee, J. Deval, P. Tabeling, and C.M. Ho, “Chaotic mixing in electrokinetically and pressure driven micro flows,” The 14th IEEE Workshop on MEMS, Interlaken, Switzerland, pp. 483-486, Jan., 2001.
4.Z. Yang, S. Matsumoto, and H. Goto, M. Matsumoto and R. Maeda, “Ultrasonic micromixer for microfluidic systems,” Sensors and Actuators, A: Physical, Vol. 93, No. 3, pp. 266-272, 2001.
5.V. Vivek, Y. Zeng, and E. S. Kim, “Novel acoustic-wave micromixer,” IEEE International Micro Electro Mechanical Systems Conference, Miyazaki, Japan, pp. 668-673, 2000.
6.J. H. Tsai, and L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump,” Sensors and Actuators A: Physical, Vol. 97-98, pp. 665-671, 2002.
7.L. H. Lu, K. S. Ryu, and C. Liu, “A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, Vol. 11, No. 5, pp. 462-469, 2002.
8.H. Jagannathan, G. G. Yaralioglu, A. S. Ergun, and B. T. Khuri-Yakub, “Micro-fluidic channels with integrated ultrasonic transducers,” Proceedings of the IEEE Ultrasonics Symposium, Vol. 2, pp. 859-862, 2001.
9.D. Gobby, P. Angeli, and A. Gavriilidis, “Mixing characteristics of T-type microfluidic mixers,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 126-132, 2001.
10.M. Engler, N. Kockmann, T. Kiefer, and P. Woias, “Numerical and experimental investigations on liquid mixing in static micromixers,” Chemical Engineering Journal, vol. 101, pp. 315-322, 2004.
11.S.H. Wong, M.C.L. Ward, and C.W. Wharton, “Micro T-mixer as a rapid mixing micromixer,” Sensor and Actuator B: Chemical, vol. 100, pp. 359-379, 2004.
12.J. Branebjerg, P. Gravesen, J.P. Krog, and C.R. Nielsen, “Fast mixing by nomination,” IEEE, pp. 441-446, 1996.
13.S.D. Müller, I. Mezic, J.H. Walther, and P. Koumoutsakos, “Transverse momentum micromixer optimization with evolution strategies,” Computers and Fluids, vol. 33, pp. 521-531, 2004.
14.S. C. Jacobson, T. E. McKnight, and J. M. Ramsey, “Microfluidic devices for electrokinetically driven parallel and serial mixing,” Analytical Chemistry, Vol.71, pp. 4455-4459, 1999.
15.T.T. Veenstra, T.S.J. Lammerink, M.C. Elwenspoek, and A.V.D. Berg, “Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems,” Journal of Micromechanics and Microengineering, vol. 9, pp. 199-202, 1999.
16.S.H. Wong, P. Bryant, M. Ward, and C. Wharton, “Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies,” Sensor and Actuator B: Chemical, vol. 95, pp. 414-424, 2003.
17.V. Mengeaud, J. Josserand, and H.H. Girault, “Mixing process in a zigzag microchannel: finite element simulation and optical study,” Analytical Chemistry, vol. 74, pp. 4279-4286, 2002
18.N.T. Nguyen and Z. Wu, “Micromixers - a review,” Journal of Micromechanics and Microengineering, vol. 15, R1-R16, 2005.
19.A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651, 2002.
20.X. Niu and Y. K. Lee, “Efficient spatial-temporal chaotic mixing in microchannels,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 454-462, 2003.
21.G. A. C. M. Spierings, J. Haisma, F. J. H. M. and Kruis, “Direct bonding of organic polymeric materials,” Philips Journal of Research, Vol. 49, pp. 139-149, 1995.
22.Y. C. Chan, M. Carles, N. J. Sucher, M. Wong and Y. Zohar, “Design and fabrication of an integrated microsystem for microcapillary electrophoresis,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 914-921, 2003.
23.J. Wei, H. Xie, M. L. Nai, C. K. Wong and L. C. Lee, “Low temperature wafer anodic bonding,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 217-222, 2003.
24.B. Bilenberg, T. Nielsen, B. Clausen and A. Kirstensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 814-818, 2004.
25.Byung-Ho Jo, Linda M. van Lerberghe, Kathleen M. Motsegood, and David J. Beebe, “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” Journal of MicroelectroMechanical System, vol. 9, NO. 1, pp. 76-81, 2000.
26.Van Oss, C. J., Chaudhury, M. K., Good, R. J., Chem. Rev. 88, pp. 927, 1988.