| 研究生: |
陳健群 Chen, Chien-Chun |
|---|---|
| 論文名稱: |
具微米柱結構之氮化鋁鎵系列蕭特基
紫外光偵測器之研究 AlGaN-based Schottky Barrier Ultraviolet Photodetector with Micropillar Structures |
| 指導教授: |
賴韋志
Lai, Wei-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 蕭特基 、光偵測器 、氮化鋁鎵 、微米柱結構 、硫化處理 |
| 外文關鍵詞: | Schottky Barrier, Photodetector, AlGaN, Micropillar Structures, (NH4)2Sx treatment |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對具微米柱結構氮化鋁鎵系列蕭特基二極體光偵測器之研究,由於成長氮化鋁鎵層的過程中,在微米柱的平台和邊緣側壁上的應力以及成長速率等等的差異影響,會存在相異鋁含量分佈在微米柱的平台和邊緣側壁的氮化鋁鎵層。從CL量測結果,波長340nm和320nm的CL影像圖可以證明,成長氮化鋁鎵層於具有微米柱結構的氮化鎵基板上,在微米柱的邊緣側壁和平台的氮化鋁鎵層有不同的鋁含量。同時光響應量測分析結果有三個階段吸收,截止波長分別落在326nm、346nm、356nm,該波長位置的響應度為1.1×10-2、5.9×10-3、和 4.04×10-3 A/W。
然而在氮化鋁鎵層表面所形成的缺陷而提供的漏電路徑,是因為晶格常數的不匹配加上成長氮化鋁鎵層時的熱擴散效應,導致缺陷的產生,為了抑制漏電流,我們使用硫化銨溶液處理試片表面,發現經過硫化處理後,降低了氧化銦錫的載子濃度和光學能隙,並在表面形成硫保護層,抑制漏電流路徑。
In this study, we demomstrated a single AlGaN layer with two different Al contents on the GaN μ-pillars template. It was found by the selective wavelength spatial cathodoluminescence images that the emission wavelength of the AlGaN layer were at 340 and 320nm on the side of the cone and on the top and valley surface of pillars, respectively. The Schottky-type photodector were also demonstrated on double Al contents of deposited AlGaN on GaN micropillar template. The three steps of response occurred at about 326, 346, and 356nm with responsivities of 1.1×10-2, 5.9×10-3, and 4.04×10-3 A/W, respectively.
However, the pits formation might arise from the lattice mismatch and the higher strain of AlGaN layer on sidewall of GaN pillar, resulting in the larger leakage current. In order to restrain the leakage current and improve the performances, we treated out the surface on sample with (NH4) 2Sx .We found that after (NH4) 2Sx treatment might result in a decrease in the carrier concentration and optical bandgap of ITO film. The effects of an (NH4) 2Sx treatment could change the properties of ITO films and form sulfide passivation for the enhancement of the schottky barrier height.
第一章
[1]H. Morkoc, Nitride Semiconductors and Devices (Spriner, Berlin,1999).
[2]M. Osinski, Gallium-Nitride-based Technologies (SPIE Press, Washington, 2002).
[3]Yan-Kuin Su, Fuh-Shyang Juang, and Min-Hong Chen, “GaN Metal-Semiconductor- Metal Visible-Blind Photodetectors with Transparent Indium-Tin-Oxide Contact Electrodes,” Jpn. J. Appl.Phys. Vol. 42(2003), pp.2257-2259.
[4]M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M.Blasingame, L. F. Reitz, “High-responsivity photoconductiveultraviolet sensors based on insulating single-crystal GaN epilayers,”Appl. Phys. Lett. Vol. 60, pp.2917 (1992).
[5]E. Monroy. E. Munoz, F. J. Sanchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Munoz and F. Cusso, “High-performance GaN p-n juction photodetectors for solar ultraviolet application ,”Semicond. Sci. Technol. 13 (1998) 1042-1046.
[6]Q. Chen, J. W. Yang, A.Osinsky, S. Gangopadhyay, B. Lim, M.Z Anwar and M. A. Khan, “Schottky barrier detectors on GaN for visible--blind ultraviolet detection,” Appl. Phys. Lett. 70, 2277 (1997).
[7]G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN,” Appl. Phys. Lett., vol.75, pp. 247-249, July 1999.
[8]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J.C. Campbell, “Comprehensive characterization of metal--semiconductor--metal ultraviolet photodetectors fabricated on single-crystal GaN,”J. Appl. Phys. 83, 6148 (1998).
[9]H. Çetin, E. Ayyildiz, A. Türüt, “ Barrier height enhancement and stability of the Au/n-InP Schottky barrier diodes oxidized by absorbed water vapor, ”J. Vac. Sci. Technol. B, vol. 23, No. 6, pp. 2436-43(2005).
[10]K. Hattori and Y. Torii, Solid-State Electron. 34, 527 (1991).
[11]M. J. Cardwell and R. F. Peart, Electron. Lett. 9, 88 (1973).
[12]H. Hasegawa, Solid-State Electron. 41, 1441 (1997).
[13]C. Michel, P. H. Nguyen, S. Ravelet, and N. T. Linh, “Experimental study and electrical model of MIS n-InP structures prepared by oxidation in acid medium,” J. Phys. D 14 (1981) 1331-42.
[14]K. Kamimura, T. Suzuki, and A. Kunioka, “InP metal-insulated-semiconductor Schottky contacts using surface oxide layers prepared with bromine water,” J. Appl. Phys. 51, 4905(1980).
第二章
[1]Elias Burstein , “Anomalous Optical Absorption Limit in InSb”, Phy. Rev Vol .93 , pp . 632 , (1954).
[2]Dieter K. Schroder , “Semiconductor material and device characterization” , A Wiley-Interscience Publication , chap. 3 (1998).
[3]施敏,“半導體元件物理與製作技術(二版)”, chap7.1 , (2002).
[4]D.A. Neamen ,“半導體物理及元件(三版)”, chap9.1 , (2003).
第三章
[1]S. M. Sze, “Semiconductor Devices Physics and Technology”, Ch.3.
[2]S. Noor Mohammad, “ Contact mechanisms and design principles for Schottky contacts to group-III nitrides,” J. Appl. Phys.Volume. 97, 063703 (2005).
[3]J. C. Campbell, AT&T Bell Lab. Technical Memorendum (unpublished).
[4]G. Dearnaley, J. H. Freeman, R. S. Nelson, Stephen, “Ion-Implantation”, Ch. 5 Applications to semiconductors, p. 561.
[5]S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, “Evidence For Tunneling in Reverse-Biased III-V Photodetector Diodes”, Appl. Phys. Lett., Vol. 36, No. 7, 1 April, 1980, p.580.
[6]S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, “In0.53Ga0.47As Photodiode With Dark Current Limited by Generation-Recombination And tunneling”, Appl. Phys. Lett., Vol. 37, No. 3, 1 August, 1981, p. 217.
[7]E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “ Analysis of reverse-bias leakage current mechanisms in GaN grown,” Appl. Phys. Lett., 84,535 (2004).
[8]J. C. Carrano, T. Li, P.A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal--semiconductor--metal ultraviolet photodetectors fabricated on single-crystal GaN,”J. Appl. Phys. 83, 6148 (1998).
[9]J. C. Carrano, T. Li, P.A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors”, Appl. Phys. Lett. 72 , 542 (1998).
[10]光電半導體技術手冊,蘇炎坤、紀國鐘.
[11]John Bardeen, “ Surface States and Rectification at a Metal Semi-Conductor Contact ”, Phys. Rev. 71, 717 (1947).
[12]M. S. Tyagi, Introduction To Semiconductor Materials and Devices, (Wiley, New York, 1991).
[13]表面科學Vol. 21, No. 12, pp. 791―799, 2000.
[14]Semiconductor Physics & Devices, Chap. 9 , Third Edition, Donald A. Neamen.
第四章
[1]S. Nakamura and M. Senoh, “ Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Jpn J. Appl. Phys., Part2 34, L1332 (1995).
[2]S. J Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw , “InGaN-GaN multiquantum-well blue and green light-emitting diodes”,IEEE J. Sel. Top. Quantum Electron. 8, 278 (2002).
[3]M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433 (1996).
[4]E. Monroy and F. Calle, in Ⅲ-Ⅴ Nitride Semiconductors: Applications and Devices, edited by E. T. Yu and M. O. Manasreh (Gordon and Breach, New York, 2000).
[5]Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Cong, Y. C. Lin, S. H. Liu, and C. S. Chang, “High detectivity InGaN-GaN multiquantum well p-n junction photodiodes ”, IEEE J. Quantum Electron. 39, 681 (2003).
[6]Y. J. Lin, C. F. You, C. L. Tsai, “Effect of (NH4) 2SX treatment on surface work function and roughness of indium-tin-oxide ”, Applied Surface Science 253 (2007) 3957-3961.
校內:2013-07-26公開