| 研究生: |
許皓筑 Syu, Hao-Jhu |
|---|---|
| 論文名稱: |
纖維加勁混凝土版抗炸性能補強之數值模擬研究 Numerical investigation on performance of fiber reinforced concrete slabs subjected to contact explosions |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
蔡營寬
Tsai, Ying-Kuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 鋼筋混凝土 、接觸爆炸 、有限元素法 、局部破壞行為 、高應變率 、元素侵蝕 |
| 外文關鍵詞: | Reinforced Concrete, Contact Explosion, Finite Element Method, Local Failure Behavior, High Strain Rate, Erosion |
| 相關次數: | 點閱:133 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著多起恐怖攻擊事件、意外爆炸事件及戰爭的發生,可得知結構物受爆炸外力作用會對結構外部環境及內部結構造成災難性的破壞,進而危及到周遭或室內的人員及設備之安全性。當結構物受爆震波作用時,結構構件(Structural element)之破壞模式(Failure mechanism)將區分整體破壞(Global failure)及局部破壞(Local failure)。其中,整體破壞包括撓曲破壞(Flexural failure)、斜剪破壞(Diagonal shear failure)及直剪破壞(Direct shear failure);而局部破壞包括成坑(Crater)、疤落(Spalling)及炸穿(Breach)三種現象。局部破壞現象中,視衝擊波之強度大小,通常在結構構件之迎爆面會產生成坑現象,在背爆面會產生疤落現象,當承受一定程度之爆震波時,則會進一步發展成炸穿現象。本研究主要以有限元素模擬為分析工具,針對鋼筋混凝土構件受爆炸外力作用下產生之局部破壞模式進行探討,並模擬一般鋼筋混凝土結構物經材料性能提升或施以補強手段後之構件破壞模式及損傷程度。考量一般建築物外牆常用之厚度為15cm,爆炸數值模擬環境之試體模型尺寸設置為50cm×50cm×15cm之鋼筋混凝土版,炸藥種類分別選用TNT及C4炸藥,炸藥量區分為100公克及150公克,並以接觸爆炸(Contact explosion)進行數值模擬。數值模型分別於材料性能提升方面,採用碳纖維混凝土、克維拉纖維混凝土及無機聚合混凝土;於補強手段方面,則分別以噴塗全聚脲彈性塗料(Polyurea coating)及在試體版側面增設動量阱(Momentum trap)之方式作為主要研究對象。研究中採用*MAT_159作為混凝土材料模型,爆壓傳播之狀態描述方程式及各材料之參數設定,以進行基本力學實驗所得數據為主,文獻建議參考值為輔。此外,考量爆炸應力波之加載率極高,本文亦針對材料之應變率敏感度及元素侵蝕條件完成相關參數研究。由於爆炸實驗複雜度較高且同時需考量安全性問題,本研究數值模擬結果以11組爆炸實驗結果進行驗證,結果顯示本研究方法可合理地預測鋼筋混凝土版構件於爆炸衝擊荷載作用下,造成之破壞類型及損傷程度。研究成果可作為建築物爆炸損傷評估工具,亦可提供不同補強手段抗炸性能提升程度之參考。
Explosions near buildings can cause catastrophic damages on the building external and internal frames, and the most important thing is that can cause injuries and loss of life to the occupants of these buildings.
In the global failure behavior, flexural failure makes the structure have Scabbing phenomenon and some of Fragment are spattered. In the local failure behavior, the local failure phenomenon includes Crater, Spalling and Breach. The location of the Crater is in the front of the specimen. It is because the difference of air and specimen medium, the stress wave reflect and refract in the edge of the specimen and the tensile stress makes the edge appear Spalling phenomenon, especially the rear surface. When the crater and spalling depth exceed the specimen depth, Breach phenomenon appear in the middle of the specimen.
This numerical investigation on performance of fiber reinforced concrete slabs subjected to contact explosions focus on the local failure behavior. For fitting the normal depth of most of building walls, the dimension of the concrete is 50cm×50cm×15cm.
For promoting the explosion capability of the reinforce concrete structure, the investigation research the objects about Carbon Fiber Reinforce Concrete, Kevlar Fiber Reinforce Concrete, Geopolymer Concrete, Reinforcement with polyurea coating and fiber patch and Momentum trap setting beside the specimen.
This investigation applies LS-DYNA numerical software for the Finite Element Analysis, and compares the numerical result with the damage discussion of real explosion experiment.
As providing the cohort investigation for the prediction and evaluation subjected to impact and explosion, *MAT_159 for concrete material is used as the main material control equations, and *MAT_159 could consider the influence of high strain rate.
[1] Rogers G L., Dynamics of framed structures. New York.: John Wiley & Sons, Inc., 1959.
[2] Baker W E., Explosions in air. University of Texas Press, Austin, TX, 1973.
[3] G. K. J. Kinney G F, Explosive shocks in air. New York, USA: Springer-Verlag, 1985.
[4] S. P. D. Mays G C, Blast effects on building. London: Thomas Telford Publications, 1995.
[5] B. Hopkinson, “British Ordnance Board Minutes 13565,” UK, 1915.
[6] UNIFIED FACILITIES CRITERIA (UFC), “STRUCTURES TO RESIST THE EFFECTS OF ACCIDENTAL EXPLOSIONS APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED,” 2005. [Online]. Available: http://dod.wbdg.org/.
[7] 吳俊諺, “鋼筋混凝土板受爆壓作用下之破壞分析,” 2010.
[8] J. Li and H. Hao, “Numerical study of concrete spall damage to blast loads,” International Journal of Impact Engineering, vol. 68, pp. 41–55, Jun. 2014, doi: 10.1016/j.ijimpeng.2014.02.001.
[9] W. Wang, D. Zhang, F. Lu, S. C. Wang, and F. Tang, “Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading,” International Journal of Impact Engineering, vol. 49, pp. 158–164, Nov. 2012, doi: 10.1016/j.ijimpeng.2012.03.010.
[10] H. Studies Deanship, M. L. R Shaheen, and D. Eng Mamoun Alqedra, “اإلسالمية الجامعة-غزة العليا الدراسات عمادة الهندسة كلية المدنية الهندسة قسم تأ نمذجة ثير خرساني مبنى على االنفجار أحمال برنامج باستخدام LS-DYNA Numerical Modeling of Blast Loads effects on a Reinforced Concrete Structure Using LS-DYNA Software,” 2015.
[11] J. Li, C. Wu, H. Hao, and Y. Su, “Experimental and numerical study on steel wire mesh reinforced concrete slab under contact explosion,” Materials and Design, vol. 116, pp. 77–91, Feb. 2017, doi: 10.1016/j.matdes.2016.11.098.
[12] Q. Meng, C. Wu, Y. Su, J. Li, J. Liu, and J. Pang, “Experimental and numerical investigation of blast resistant capacity of high performance geopolymer concrete panels,” Composites Part B: Engineering, vol. 171, pp. 9–19, Aug. 2019, doi: 10.1016/j.compositesb.2019.04.010.
[13] M. Abdel-Kader, “Modified settings of concrete parameters in RHT model for predicting the response of concrete panels to impact,” International Journal of Impact Engineering, vol. 132, Oct. 2019, doi: 10.1016/j.ijimpeng.2019.06.001.
[14] 吳 明 憲, “聚脲噴塗鋼筋混凝土版防爆性能補強測試與數值模擬,” 2019.
[15] 劉建賢, “鋼筋混凝土版抗炸性能補強試驗及模擬,” 2020.
[16] R. A. Strehlow and W. E. Baker, “THE CHARACTERIZATION AND EVALUATION OF ACCIDENTAL EXPLOSIONS,” Pergamon Press, 1976.
[17] W.E. Baker P.A. Cox J.J. Kulesz R.A. Strehlow P.S. Westine, “Explosion Hazards and Evaluation, Volume 5,” Elsevier Science, 1983.
[18] Josef Henrych, The Dynamics of Explosion and Its Use. New York: Elsevier/North-Holland, Inc, 1979.
[19] H. L. Brode, “Numerical solutions of spherical blast waves,” Journal of Applied Physics, vol. 26, no. 6, pp. 766–775, 1955, doi: 10.1063/1.1722085.
[20] Amy Technical Manuals, “TM 5-855-2 PROTECTIVE DESIGN PROTECTION AGAI.”
[21] J. I. J. M. S. N.-N. A. V. Amirkhizi, An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects. Philosophical Magazine, 2006.
[22] X. ; Y. X. ; C. Z. ; D. G. Zhang, “Explosion spalling of reinforced concrete slabs with contact detonations. ,” 2006.
[23] Vasilis. Karlos, George. Solomos, Bernard. Viaccoz, and European Commission. Joint Research Centre. Institute for the Protection and the Security of the Citizen., Calculation of blast loads for application to structural components. Publications Office, 2013.
[24] D. O. Dusenberry, Handbook for blast resistant design of buildings. J. Wiley, 2010.
[25] 林維明、蘇瑞榮, “纖維混凝土材料強度之研究與應用,” 1987.
[26] 王璞、黃真、周岱、王賢棟、張昌, “碳纖維混雜纖維混凝土抗衝擊性能研究,” 2012.
[27] 洪崇展、顏誠皜、戴艾珍、溫國威、張庭維, “DB4401-P033-專輯-新世代多功能-高性能纖維混凝土,” 2017.
[28] “土木水利-第47卷第2期-電子書,” 2014.
[29] M. Sato, M. Iijima, and Y. Takahashi, “Photoresist characteristics of polyurea films prepared by vapor deposition polymerization,” 1997.
[30] L. Daniel G., “State-of-the-Art Technological Development in Concrete Computational Modeling,Emphasis on Blast Effect,” 31st annual Airport conference, 2008.
[31] J. Yi, M. C. Boyce, G. F. Lee, and E. Balizer, “Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes,” Polymer, vol. 47, no. 1, pp. 319–329, Jan. 2006, doi: 10.1016/j.polymer.2005.10.107.
[32] J. A. Pathak et al., “Structure evolution in a polyurea segmented block copolymer because of mechanical deformation,” Macromolecules, vol. 41, no. 20, pp. 7543–7548, Oct. 2008, doi: 10.1021/ma8011009.
[33] S. N. Chang, D.-T. Chung, -F. Li Y., and S. Nemat-Nasser, “Target Configurations for Plate Impact Recovery Experiments,” 1992.
[34] I. Do and J. Day, “LS-DYNA ALE & Fluid-Structure Interaction Modeling OVERVIEW OF ALE METHOD IN LS-DYNA,” 2000.
[35] H. Chen, “LS-DYNA Structured ALE (S-ALE) Solver (1) Mesh Generation and Input Setup.” [Online]. Available: http://ftp.lstc.com/anonymous/outgoing/hao/sale/.
[36] 宋學官, ANSYS流固耦合分析與工程實例. 中國水利水電出版社(水利電力出版社), 2012.
[37] 蔡營寬、李宏輝、劉宇倫、鄭大偉、李有豐、吳嘉偉, “無機聚合複合材料之抗衝擊力學性能試驗研究.”
[38] P. H. Bischoff and S. H. Perry, “Compressive behaviour of concrete at high strain rates,” 1991.
[39] 蔡營寬、鄭大偉、李宏輝, “無機聚合高早強材料之 抗衝擊力學性能研究.”
[40] M. K. Mcvay, “Spall Damage of Concrete Structures.”
[41] M. Trentacoste, “Users Manual for LS-DYNA Concrete,” 2007.
[42] A. F. S. Wai-Fah Chen, Constitutive Equations for Engineering Materials Elasticity and Modeling. 1994.
[43] 胡宣德, “中空雙鋼管混凝土柱受軸壓及彎矩載重之非線性分析,” 2006.
[44] A. M. Neville, “properties_of_concrete_by_a_m_neville_pd.”
[45] ASCE, ASCE Task Committee on Concrete and Masonry Structure State of the Art Report on Finite Element Analysis of Reinforced Concrete. New York, 1982.
[46] B. Rajini and A. V. N. Rao, “Mechanical Properties of Geopolymer Concrete with Fly Ash and GGBS as Source Materials,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 03, no. 09, pp. 15944–15953, Sep. 2014, doi: 10.15680/ijirset.2014.0309023.
[47] Glenn G Balmer, Shearing strength of concrete under high triaxial stress: Computation of Mohr’s envelope as a curve (Structural Research Laboratory Report) (English) Unknown Binding. Structural Research Laboratory, 1949.
[48] J. W. T. and S. T. K. C. Allen Ross, “Effects of Strain Rate on Concrete Strength,” Materials Journal.
[49] P. H. Bischoff and S. H. Perry, “Impact Behavior of Plain Concrete Loaded in Uniaxial Compression,” Journal of Engineering Mechanics, vol. 121, no. 6, Jun. 1995, doi: 10.1061/(ASCE)0733-9399(1995)121:6(685).
[50] 內政部, “混凝土結構設計規修正規定,” 2011.
[51] LSTC, “LS-DYNA ® KEYWORD USER’S MANUAL VOLUME II Material Models LIVERMORE SOFTWARE TECHNOLOGY (LST), AN ANSYS COMPANY,” 2020. [Online]. Available: www.lstc.com.
[52] D. K. Thai and S. E. Kim, “Prediction of UHPFRC panels thickness subjected to aircraft engine impact,” Case Studies in Structural Engineering, vol. 5, pp. 38–53, Jun. 2016, doi: 10.1016/j.csse.2016.03.003.
[53] J. Trajkovski, “Comparison of MM-ALE and SPH methods for modelling blast wave reflections of flat and shaped surfaces,” 2017.
[54] L. E. Schwer, “14 th International LS-DYNA Users Conference Jones-Wilkens-Lee (JWL) Equation of State with Afterburning,” Miller & Guirguis, 2016.
[55] S. Koli, P. Chellapandi, L. Bhaskara Rao, and A. Sawant, “Study on JWL equation of state for the numerical simulation of near-field and far-field effects in underwater explosion scenario,” Engineering Science and Technology, an International Journal, vol. 23, no. 4, pp. 758–768, Aug. 2020, doi: 10.1016/j.jestch.2020.01.007.
[56] B. Dhanasekaran, T. R. Subash, A. Engineering Manager, C. Engineering Manager, and J. General Manager, “Numerical Modeling of ‘Concrete Response’ to High Strain Rate Loadings,” 2017.
[57] Javier Malvar and C. Allen Ross, “Review of Strain Rate Effects for Concrete in Tension.”
[58] N. Markovich, E. Kochavi, and G. Ben-Dor, “Calibration of a Concrete Damage Material Model in LS-Dyna for a Wide Range of Concrete Strengths,” 2009, doi: 10.13140/RG.2.1.3503.4723.
[59] S. Hong TAN, R. Chan, J. Koon POON, and D. Chng, “Verification of Concrete Material Models for MM-ALE Simulations.”
[60] Y. D. Murray, “Evaluation of LS-DYNA Concrete Material Model 159,” 2007.
[61] A. Pavlovic, C. Fragassa, and A. Disic, “Comparative numerical and experimental study of projectile impact on reinforced concrete,” Composites Part B: Engineering, vol. 108, pp. 122–130, Jan. 2017, doi: 10.1016/j.compositesb.2016.09.059.