簡易檢索 / 詳目顯示

研究生: 陳慶昌
Chen, Ching-Chang
論文名稱: 影像自動化微組裝工廠之發展
Development of Visual-Based Automatic Assembly Microfactory
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 98
中文關鍵詞: 樣版比對微撓性機構影像自動化視覺伺服區間邊緣統計法微工廠
外文關鍵詞: microfactory, micro compliant mechanism, pattern matching, automatic, visual servoing, region edge statistics
相關次數: 點閱:117下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用「光機電系統控制實驗室」歷年來研究之微夾持器,搭配影像的演算法,區域邊緣統計法(Regional Edge Statistics, RES),發展PC-based的影像自動化微組裝工廠,系統主要分為影像系統、微夾持器系統與運動平台系統三大部份。
    首先,微夾持器系統部份,利用669×546×200μm大小,材料為PU,以壓電致動器驅動的撓性微夾持器,夾持的物件大小約60~80μm,可搬運並以黏膠的方式組裝兩個微小物件。其次為影像系統,主要以TI DSP C6000為主軸,發展影像的演算法與影像自動化識別演算法,利用即時資料交換(RTDX, Real-Time Data eXchange)讓DSP與IPC端做溝通,並達到影像閉迴路控制。最後是運動平台系統,該系統主要有三個平台,分別為微夾持器載具平台、組裝平台與黏膠平台,構成一個7mm×5.76mm×15mm的運動空間,平台的解析度最大為1.3μm,最小可達0.5μm,以期能精準地定位與組裝。
    本研究採用有機接合方式,成功地組裝 60μm與 380μm的微細銅線,利用區域邊緣統計法(Regional Edge Statistics, RES)達到影像閉迴路控制自動化組裝,採用最小距離分類器分類方法,成功的辨識物件與組裝物件。

    In this thesis, the micro-compliant gripper developed by “Opto-Mechatronic System Control Laboratory” is utilized to develop a PC-based visual servoing system, which utilizes regional edge statistics( RES) algorithm, for automatic assembly in microfactory.
    At first, the micro gripper system has a piezo-drived compliant micro gripper which can grasp an object with diameter 60~80μm. Next, the visual system utilizes the DSP C6000 of TI to develop an image processing and regional edge statistics algorithm. Through using Real-Time Data eXchange (RTDX ), The DSP and IPC can exchange data immediately and used for visual servoing control . Finally, the motion system including motion stage, assembly stage and glue stage and is constructed to provide a motion space with 7mm×5.76mm×15mm. The resolution of the motion stage, with maximum positioning accuracy of 1.3μm and the minimum of 0.5μm is expected for precise positioning and assembly.
    In this thesis, organic glue is utilized to assemble two components with diameter 60μm and 380μm, respectively and the RES algorithm is employed to realize the visual-based automatic assembly system. In addition, the minimum distance classifier is also adopted and used for successful object recognition and classification in assembly task.

    目 錄 中文摘要..................................... I Abstract..................................... II 誌 謝..................................... III 目 錄..................................... IV 表 目 錄..................................... VI 圖 目 錄..................................... VII 符 號 表..................................... XI 第一章 緒論.................................. 1 1-1前言...................................... 1 1-2文獻回顧...................................2 1-2.1 視覺伺服領域............................2 1-2.2微工廠與微物件操縱領域...................5 1-3研究目標與方法.............................13 1-4本文架構...................................14 第二章 機械視覺與圖形識別.....................15 2-1 影像前處理................................15 2-1.1連通性與區域識別.........................15 2-1.2直方圖等化法.............................16 2-1.3平滑濾波器...............................19 2-2 邊緣偵測..................................20 2-2.1 二階導數-拉普拉斯(Laplacian)............20 2-2.2 梯度函數-索貝爾(Sobel)..................21 2-3 影像形態學................................22 2-3.1 影像形態學-膨脹(Dilation)...............22 2-3.2 影像形態學-侵蝕(Erosion)................23 2-3.3 影像形態學-斷開與閉合(opening and closing).24 2-4 圖形識別..................................25 2-4.1 最小距離分類器..........................26 2-4.2 類神經網路分類器........................27 第三章 視覺伺服架構與影像控制器設計...........31 3-1 視覺伺服系統..............................31 3-1.1相機投影模型.............................31 3-1.1.1透視投影法.............................32 3-1.1.2垂直正交投影法.........................32 3-1.1.3仿射投影法.............................33 3-1.2 攝影機架設方案..........................33 3-1.3視覺伺服架構.............................35 3-2 影像定位演算法............................36 3-2.1 樣版比對法..............................36 3-2.2 區間邊緣統計法..........................38 3-3 影像控制建模..............................42 3-4 影像控制器設計............................48 第四章 微物件黏膠操縱系統.....................51 4-1 微夾持系統................................51 4-1.1端效器設計...............................51 4-1.2端效器製造...............................53 4-1.3微夾持器之組裝...........................57 4-2 運動空間設計..............................58 4-2.1 載具平台................................59 4-2.2 組裝平台與黏膠平台......................59 4-2.3 黏膠材料................................60 4-3 影像裝置與架設............................60 第五章 系統整合與測試.........................63 5-1 影像處理與特徵萃取........................63 5-1.1物件影像處理.............................63 5-1.2組合件影像處理...........................65 5-1.3微夾持器影像處理.........................67 5-2 圖形識別..................................69 5-3 視覺系統校準與影像控制器測試..............73 5-3.1視覺系統校準.............................73 5-3.2影像回授訊號頻寬測試.....................74 5-3.3影像控制器測試...........................74 5-4 影像自動化微黏膠組裝測試..................77 第六章 結論與未來展望.........................82 6-1 結論......................................82 6-2 未來展望..................................83 參考文獻......................................84 附錄A.........................................88 附錄B.........................................90 自述..........................................98

    參考文獻
    [1] Y. Shirai and H. Inoue, “Guidinf a robot by a visual feedback in assembling task,” Pattern Recognition, Vol. 5, pp. 99-108, 1973.
    [2] J. Hill and W. T. Park, “Real time control of a robot with a mobile camera,” in Proc. 9th ISIR, Washington, D.C., pp. 233-246, Mar. 1979.
    [3] A. C. Sanderson and L. E. Weiss, “Image-Based visual servo control using relational graph error signals,” in Proceedings of the IEEE International Confference on Cybernetics and Society, pp. 404-417, Oct. 1980.
    [4] S. Hutchinson, G. D. Hager and P. I. Corke, “A tutorial on Visual Servo Control,” IEEE Transaction on Robotics & Automation, Vol. 12, No. 5, pp. 651-670, Oct. 1996.
    [5] E. Malis, F.s Chaumette and S. Boudet, “2-1/2D visual servoing,” IEEE Transaction on Robotics & Automation, Vol. 15, No. 2, pp. 238-250, April. 1999.
    [6] K. D. and C. H. I., “Survey on Visual Servoing for Manipulation,” IEEE Transaction on Robotics & Automation, Vol. 15, No. 2, pp. 238-250, April. 1999.
    [7] C.-J. Kim, A. P. Pisano, R. S. Muller and M. G. Lim, “Polysilicon microgripper,” 4th Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, pp. 48-51, June 1990.
    [8] 張景堯,「形狀記憶合金驅動高分子微夾持系統之發展」,國立成功大學機械工程學系碩士論文,頁次:1-7,中華民國九十二年六月。
    [9] 机啟成,「形狀記憶合金驅動生醫用高分子微夾持系統之發展」,國立成功大學機械工程學系碩士論文,頁次:2-8,中華民國九十三年七月。
    [10] 施博偉,「形狀記憶合金驅動微夾持系統之應用」,國立成功大學機械工程學系碩士論文,頁次:1-8,中華民國九十四年七月。
    [11] D.-S. Kwon, K. Y. Woo, S. K. Song, W. S. Kim and H. S. Cho, “Microsurgical Telerobot System,” Proceeding of the IEEE International Conference in Intelligent Robots and Systems, Vol.2, pp. 945-950, Oct. 1998.
    [12] D. E. Whitney., “Quasi-static assembly of compliantly supported rigid parts,” ASME J. Dyn. Systems Meas. Control 104, pp. 65-77, 1982.
    [13] F. Fallside, M. R. Jahanbin, T. P. Marsland, A.S. Tabandeh and M. W. Wright, “A Prototype, Integrated, Cad-Based Robotic Assembly System,” IEEE , Vol.2, pp. 228-234, 1989.
    [14] H. Woern, J. Seyfried, St. Fahlbusch, A. Buerkle and F. Schmoeckel, “Flexible Microrobots for Micro Assembly Tasks,” Proceeding of the 2000 International Symposium on Micromechatronics and Human Science, pp. 135-143, Oct. 2000.
    [15] X. Li, G. Zong and S. Bi, “Development of Global Vision System for Biological Automatic Micro-Manipulation System,” Proceeding of the 2001 IEEE International Conference on Robotic & Automation, Seoul Korea, pp. 127-132, May 2001.
    [16] T. Baidyk, E. Kussul, “Application of neural classifier for flat image recognition in process of microdevice assembly,” Proceedings of the International Joint Conference on Neural Networks, pp. 12-17, 2002.
    [17] T. Baidyk, E. Kussul, O. Makeyev, A. Caballero and L. Ruiz, “Flat image recognition in process of microdevice assembly,” Pattern Recognition Letters, Vol.25, pp. 107-118, 2004.
    [18] K. B.k Yesin and B. J. Nelson, “A CAD model based tracking system for visually guided microassembly,” J. of Robotica, Vol.23, pp. 409-418, 2005.
    [19] H. Maekawa and K. Komoriya, “Development of a micro transform arm for a microfactory,” Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul Korea, pp. 1444-1451, 2001.
    [20] Y. Okazaki, N. Mishima and K. Ashida, “Microfactory- Concept, History, and Developments,” Journal of Manufacturing Science and Engineering, ASME, Vol.126, pp. 837-844, 2004.
    [21] E. Kussul, T. Baidyk, L. R. Huerta, A. C. Ruiz, G. Velasco and L. Kasatkina, “Development of micromachine tool prototypes for microfactories,” Journal of Micromech. Microeng., Vol.12, pp. 795-812, 2002.
    [22] I. Beltrami, C. Joseph, R. Clavel, J.-P. Bacher and S. Bottinelli, “Micro- and nanoelectric-discharge machining,” Journal of Materials Processing Technology, Vol.149, pp. 263-265, 2004.
    [23] C. Clevy, A. Hubert, J. Agnus and N. Chaillet, “A micromanipulation cell including a tool changer,” Journal of Micromechanics Microengineering, Vol.15, pp. 292-301, 2005.
    [24] 張威弘,「視覺伺服微物件搬運自動化之發展」,國立成功大學機械工程學系碩士論文,頁次:21-22,中華民國九十三年七月。
    [25] 林光彥,「以DSP實現圖形識別於微物件操縱系統之發展」,國立成功大學機械工程學系碩士論文,頁次:25-34,中華民國九十四年七月。
    [26] M. Sonka, V. Hlavac and R. Boyle, “Image processing, analysis, and machine vision,” 2nd edition, PWS, 1999.
    [27] G. Woods原著,謬紹綱編譯,「數位影像處理」,2nd edition, 普林斯頓國際有限公司,2004年10月。
    [28] R. C. Miall, D. J. Weir, D. M. Wolpert and J. F. Stein, “Is the cerebellum a Smith predictor?,” Journal of Motor Behavior, Vol. 25, No. 3, pp. 203-216, 1993.
    [29] 陳泰成,「微組裝系統影像伺服建模與測試」,國立成功大學機械工程學系碩士論文,中華民國九十一年六月。
    [30] R. Chassaing, “DSP Applications using C and the TMS320C6x DSK,” 1st edition, Wiley, 2002.

    下載圖示 校內:2007-07-25公開
    校外:2007-07-25公開
    QR CODE