| 研究生: |
沈盈君 沈盈君, Ying-Jun Shen |
|---|---|
| 論文名稱: |
石墨烯量子點應用於薄膜電晶體記憶元件之研製 Investigation of Thin Film Transistor Memory Devices with Graphene Quantum Dots |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 有機記憶體薄膜電晶體 、石墨烯量子點 、並五苯 |
| 外文關鍵詞: | Organic Memory Thin Film Transistor, Graphene Quantum Dots, Pentacene |
| 相關次數: | 點閱:128 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之主要目的是探討石墨烯量子點加入聚甲基丙烯酸甲酯做為浮動閘(載子捕捉層)後對薄膜電晶體操作特性影響之研究。本論文著重在針對有無添加石墨烯量子點的情況下,去做一連串的物性及電性分析,最後再進行可靠度的測試。
實驗分為三個部分,主要比較使用不同材料的浮動閘做為有機薄膜電晶體記憶元件之特性差異。實驗一,先是以聚甲基丙烯酸甲酯做為浮動閘的材料,其結構為n^+型矽(閘極)/二氧化矽(介電層)/聚甲基丙烯酸甲酯(浮動閘)/並五苯(通道層)/金(源極和汲極)。從轉移特性曲線中,可以得知臨界電壓為-20.46V,開關電流比為9.02×104,次臨界斜率為2.37 V/decade,記憶儲存窗為8.52 V。而在實驗二,其結構與實驗一相同,只是改以石墨烯量子點與聚甲基丙烯酸甲酯混合層做為浮動閘的材料。石墨烯量子點在元件中是扮演抓取載子的重要角色,從電特性的量測結果中可明顯看出,混入石墨烯量子點後其開關電流比約提高2倍、次臨界擺幅約降低2倍且記憶儲存窗約提高11倍。而在寫入-讀取-抹除-讀取測試中,具有良好的開關特性,其開/關汲極電流比可以高達104。此外,根據retention time結果,我們發現混入石墨烯量子點後能有效提升載子保存能力。總結以上結果可知混入石墨烯量子點後特性能明顯改善。
最後實驗三,是以實驗二的結構為基礎,在浮動閘上面再多加一層聚甲基丙烯酸甲酯做為穿隧層。原本我們期望多加一層聚甲基丙烯酸甲酯後,能降低表面的粗糙度,使與通道層的接面品質變更好,但從結果顯示,並沒有因此提升電特性及開關特性,且記憶儲存窗反而變更小。我們將這結果歸因於聚甲基丙烯酸甲酯-石墨烯量子點與聚甲基丙烯酸甲酯混合層之間的接面品質不好以及聚甲基丙烯酸甲酯-石墨烯量子點與聚甲基丙烯酸甲酯混合層-二氧化矽三層的總厚度太厚,導致閘極控制能力下降,特性變差。
The main purpose of this thesis is to investigate the impact on thin film transistor’s operation properties after graphene quantum dots (GQDs) blend into poly (methyl methacrylate) (PMMA) as floating gate. This study focused on discussing the condition of adding GQDs or not, and then did a series of physical and electrical analyses. At the end, I did the further reliability testing.
Here we divided the experiment into three parts. The purpose was to do the comparisons of pentacene-based OTFT memory using different materials as floating gate. In experiment I, we used PMMA as floating gate. The structure was composed by n^+-Si (gate electrode) / SiO2 (dielectric layer) / PMMA (floating gate) / pentacene (channel layer) / Au (source and drain electrodes). The threshold voltage of -20.46 V, on/off current ratio of 9.02×104, sub-threshold swing of 2.37 V/decade, and memory window of 8.52 V can be obtained from transfer characteristics. In experiment II, the structure was the same as experiment I, but the floating gate material was changed as PMMA:GQDs composite layer. The GQDs play an important role to capture the carrier charges in the transistor device. From the results of electrical measurement, we could find that it achieved about two times higher on/off current ratio, two times faster sub-threshold swing and eleven times larger memory window after adding GQDs into the PMMA layer. Moreover, in write-read-erase-read cycle test, it had well switching cycle performance. The curves revealed that the probe current of the on-state was four orders of magnitude higher than that of the off-state. Besides, according to the retention time, we found that it could promote the charge storage time after adding in GQDs. All of the results illustrated that it could improve the memory properties by adding GQDs into the PMMA layer.
In experiment III, we used the experiment II’s structure as based, and added the PMMA on the top of PMMA:GQDs composite layer as tunneling layer. Originally, we expected that it can reduce the surface roughness which made the interface between floating gate and channel layer become well. However, the results showed it didn’t enhance the electrical and switching properties. On the contrary, the memory window became smaller. We attributed these results to the PMMA- PMMA:GQDs interface was not good and the total PMMA-PMMA:GQDs-SiO2 three layers was so thick that made the gate control decline.
[1] Q. D. Linga, D. J. Liawb, C. Zhuc, D. S. H. Chanc, E. T. Kanga, K. G. Neoh, “Polymer electronic memories: Materials, devices and mechanisms”, Progress in Polymer Science, 33, pp. 917-978 (2008)
[2] M. F. Chang, P. T. Lee, S. P. McAlister and A. Chin, “A flexible organic pentacene nonvolatile memory based on high-dielectric layers”, Applied Physics Letters, 93, 233302 (2008)
[3] H. Y. Li, L. H. Guo, W. Y. Loh, L. K. Bera, Q. X. Zhang, N. Hwang, E. B. Liao, K. W. Teoh, H. M. Chua, Z. X. Shen, C. K. Cheng, G. Q. Lo, N. Balasubramanian and D. L. Kwong, “Bendability of Single-Crystal Si MOSFETs Investigated on Flexible Substrate”, IEEE Electron Device Letters, 27, pp. 538-541 (2006)
[4] I. M. Graza and S. P. Lacour, “Flexible pentacene organic thin film transistor circuits fabricated directly onto elastic silicone membranes”, Applied Physics Letters, 95, 243305 (2009)
[5] C. S. Kim, S. J. Jo, J. B. Kim, S. Y. Ryu, J. H. Noh, H. K. Baik, S. J. Lee and K. M. Song, “High-performance and low-voltage pentacene thin film transistors fabricated on the flexible substrate”, Semiconductor Science and Technology, 22, pp. 691-694 (2007)
[6] Ch. Pannemann, T. Diekmann and U. Hilleringmann, “Nanometer scale organic thin film transistors with Pentacene”, Microelectronic Engineering, 67-68, pp. 845-852 (2003)
[7] Y. H. Kim, D. G. Moon and J. I. Han, “Organic TFT Array on a Paper Substrate”, IEEE Electron Device Letters, 25, pp. 702-704 (2004)
[8] Y. Guo, G. Yu and Y. Liu, “Functional Organic Field-Effect Transistors”, Advanced Materials, 22, pp. 4427-4447 (2010)
[9] S. Wang, C. W. Leung, P. K.L. Chan, “Enhanced memory effect in organic transistor by embedded silver nanoparticles”, Organic Electronics, 11, pp. 990-995 (2010)
[10] D. Yu, B. L. Wehrenberg, P. Jha, J. Ma, and P. Guyot-Sionnesta, “Electronic transport of n-type CdSe quantum dot films: Effect of film treatment”, Journal of Applied Physics, 99, 104315 (2006)
[11] J. C. Hsu, W. Y. Lee, H. C. Wu, K. Sugiyama, A. Hirao and W. C. Chen, “Nonvolatile memory based on pentacene organic field-effect transistors with polystyrene para-substituted oligofluorene pendent moieties as polymer electrets”, Journal of Materials Chemistry, 22, pp. 5820-5827 (2012)
[12] Marko Marinkovic, Dagmawi Belaineh, Veit Wagner and Dietmar Knipp, “On the Origin of Contact Resistances of Organic Thin Film Transistors”, Advanced Materials, 24, pp. 4005-4009 (2012)
[13] S. Lai, “Flash memories: where we were and where we are going”, IEEE International Electron Devices Meeting, pp. 971-973 (1998)
[14] http://www.explainthatstuff.com/flashmemory.html
[15] W. Wang and D. Ma, “Low-Voltage Organic Nonvolatile Thin-Film Transistor Memory Based on a P(MMA-GMA)-Al-O Complex Layer”, IEEE Electron Device Letters, 32, pp. 405-407 (2011)
[16] S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, “Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers”, Applied Physics Letters, 96, 033302 (2010)
[17] R. Schroeder, L. A. Majewski, M. Grell, “All-Organic Permanent Memory Transistor Using an Amorphous, Spin-Cast Ferroelectric-like Gate Insulator”, Advanced Materials, 16, pp. 633-636 (2004)
[18] M. Mushrush, A. Facchetti, M. Lefenfeld, H. E. Katz, and T. J. Marks, “Easily Processable Phenylene−Thiophene-Based Organic Field-Effect Transistors and Solution-Fabricated Nonvolatile Transistor Memory Elements”, J. Am. Chem. Soc., 125, pp. 9414-9423 (2003)
[19] (a)http://www.futurex.com/industry-solutions/emv-solutions.asp
(b)http://www.scheidt-bachmann.de/en/parking-systems/use-cases/entry-exit/eticket
(c)http://www.pro-curo.com/identification.php
(d)http://www.editionguard.com/blog/
[20] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer”, Phys. Rev. Lett., 100, 016602 (2008)
[21] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits”, Appl. Phys. Lett., 92, 151911 (2008)
[22] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science, 320, pp. 1308 (2008)
[23] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306, pp. 666-669 (2004)
[24] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438, pp. 197–200 (2005)
[25] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics”, Nature Nanotechnology, 5, pp. 722–726 (2010)
[26] C. J. Park, K. H. Cho, W.-C. Yang, H. Y. Cho, Suk-Ho Choi, R. G. Elliman, J. H. Han and Chungwoo Kim, “Large capacitance-voltage hysteresis loops in SiO2 films containing Ge nanocrystals produced by ion implantation and annealing”, Appl. Phys. Lett., 88, 071916 (2006)
[27] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell”, IEEE Electron Device Lett., 21, pp. 543-545 (2000)
[28] B. M. Dhar, R. Ozgun, T. Dawidczyk, A. Andreou, H. E. Katz, “Threshold voltage shifting for memory and tuning in printed transistor circuits”, Materials Science and Engineering R, 72, pp. 49-80 (2011)
[29] C. W. Tseng and Y. T. Tao, “Electric bistability in pentacene film-based transistor embedding gold nanoparticles”, Journal of the American Chemical Society, 131, pp. 12441-12450 (2009)
[30] S. J. Kim, J. M. Song and J. S. Lee, “Transparent organic thin-film transistors and nonvolatile memory devices fabricated on flexible plastic substrates”, Journal of Materials Chemistry, 21, pp. 14516-14522 (2011)
[31] Y. C. Chen, C. Y. Huang, H. C. Yu, and Y. K. Su, “Nonvolatile memory thin film transistors using CdSe/Zns quantum dot poly(methacrylate) composite layer formed by a two-step spin coating technique”, J. Appl. Phys., 112, 034518 (2012)
[32] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, G. Schitter, “Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator”, Journal of Applied Physics, 96, 6431 (2004)
[33] Y. Guo, Y. Liu, C. Di, G. Yu, W. Wu, S. Ye, Y. Wang, X. Xu, Y. Sun, “Tuning the threshold voltage by inserting a thin molybdenum oxide layer into organic field-effect transistors”, Applied Physics Letter, 91, 263502 (2007)
[34] D. J. Gundlach, L. Jia and T. N. Jackson, “Pentacene TFT with improved linear region characteristics using chemically modified source and drain electrodes”, IEEE Electron Device Letters, 22, 12 (2001)
[35] W. Wang and D. G. Ma, “Nonvolatile memory effect in Organic Thin-Film Transistor based on aluminum nanoparticle floating gate”, Chinese Physics Letters, 27, 018503 (2010)
[36] X. C. Ren, S. M. Wang, C. W. Leung, F. Yan and P. K. L. Chan, “Thermal annealing and temperature dependences of memory effect in organic memory transistor”, Applied Physics Letters, 99, 043303 (2011)
[37] M. F. Mabrook, Y. Yun, C. Pearson, D. A. Zeze, and M. C. Petty, “A pentacene-based organic thin film memory transistor”, Applied Physics Letters, 94, 173302 (2009)
[38] Z. Liu, F. Xue, Y. Su, Y. M. Lvov and K. Varahramyan, “Memory Effect of a Polymer Thin-Film Transistor With Self-Assembled Gold Nanoparticles in the Gate Dielectric”, IEEE Transactions on Nanotechnology, 5, pp. 379-384 (2006)
[39] S. Paul, C. Pearson, A. Molloy, M. A. Cousins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas and M. C. Petty, “Langmuir-Blodgett Film Deposition of Metallic Nanoparticles and Their Application to Electronic Memory Structures”, Nano Letters, 3, pp. 533-536 (2003)
[40] M. Y. Chiua, C. C. Chena, J. T. Sheub and K. H. Wei, “An optical programming/electrical erasing memory device:Organic thin film transistors incorporating core/shell CdSe@ZnSe quantum dots and poly(3-hexylthiophene)”, Organic Electronics, 10, pp. 769-774 (2009)
[41] S. T. Han, Y. Zhou, Z. X. Xu, L. B. Huang, X. B. Yang and V. A. L. Roy, “Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories”, Advanced Materials, 24, pp. 3556-3561 (2012)
[42] https://stuff.mit.edu/afs/athena.mit.edu/course/3/3.082/www/team2_f02/Pages/processing.html
[43] Sohrab Ahmadi Kandjani, Soghra Mirershadi and Arash Nikniaz, “Inorganic–Organic Perovskite Solar Cells”, Solar Cells - New Approaches and Reviews, ch.8 (2015)
[44] D. Sarid, “Scanning Force Microscopy”, Oxford Press, Oxford publishing company, ch.3 (1994)
[45] Dawn A. Bonnell, “Scanning probe microscopy and spectroscopy: theory, techniques, and applications”, Wiley-VCH., (2001)
[46] Y. Martin, C.C. Williams and H. K. Wickramadinghe, “Atomic force microscope-force mapping and profiling on a sub 100-Å scale”, J. Appl. Phys., 61, 4723 (1987)
[47] F. J. Giessibl, Ch. Gerber, and G. Binning, “A low-temperature atomic force/scanning tunneling microscope for ultrahigh vacuum”, J. Vac. Sci. Technol. B, 9, 984 (1991)
[48] P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, and H. G. Hansma, “Tapping mode atomic force microscopy in liquids”, Appl. Phys. Lett., 64, 13, 1738 (1994)
[49] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, “Influence of the dielectric roughness on the performance of pentacene transistors”, Appl. Phys. Lett., 85, 4400 (2004)
[50] W.-Y. Chou, C.-W. Kuo, H.-L. Cheng, Y.-R. Chen, and F.-C. Tang, “Effect of surface free energy in gate dielectric in pentacene thin-film transistors”, Appl. Phys. Lett., 89, 112126 (2006)
[51] Y. Wen, Y. Liu, Y. Guo, G. Yu, and W. P. Hu, “Experimental Techniques for the Fabrication and Characterization of Organic Thin Films for Field-Effect Transistors”, Chem. Rev., 111, pp. 3358–3406 (2011)
[52] K. Shin, S. Y. Yang, C. Yang, H. Jeon, C. E. Park, “Effects of polar functional groups and roughness topography of polymer gate dielectric layers on pentacene field-effect transistors”, Org. Electronics, 8, pp. 336-342 (2007)
[53] S. H. Kim, S. Nam, J. Jang, K. Hong, C. Yang, D. S. Chung, C. E. Park, and W.-S. Choi, “Effect of the hydrophobicity and thickness of polymer gate dielectrics on the hysteresis behavior of pentacene-based field-effect transistors”, J. Appl. Phys., 105, 104509 (2009)
[54] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer”, Phys. Rev. Lett., 100, 016602 (2008)
[55] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene”, Solid State Communications., 146, pp. 351–355 (2008)
[56] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Appl. Phys. Lett., 92, 151911 (2008)
[57] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science, 320, pp. 1308 (2008)
[58] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, T. Lei, H. R. Kim II, Y. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nat. Nanotechnol., 5, pp. 574–578 (2010)
[59] S. H. Chae, W. J. Yu, J. J. Bae, D. L. Duong, D. Perello, H. Y. Jeong, Q. H. Ta, T. H. Ly, Q. A. Vu, M. Yun, X. Duan, and Y. H. Lee, “Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbonnanotube transistors”, Nat. Mater., 12, pp. 403–409 (2013)
[60] W. J. Yu, S. Y. Lee, S. H. Chae, D. Perello, G. H. Han, M. Yun, and Y. H. Lee, “Small Hysteresis Nanocarbon-Based Integrated Circuits on Flexible and Transparent Plastic Substrate”, Nano Lett., 11, pp. 1344–1350 (2011)
[61] W. J. Yu, S. H. Chae, S. Y. Lee, D. L. Duong, and Y. H. Lee, “Ultra-Transparent, Flexible Single-walled Carbon Nanotube Non-volatile Memory Device with an Oxygen-decorated Graphene Electrode”, Adv. Mater., 23, pp. 1889–1893 (2011)
[62] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306, pp. 666–669 (2004)
[63] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438, pp. 197–200 (2005)
[64] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Wantanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics”, Nat. Nanotechnol., 5, pp. 722–726 (2010)
[65] Y. Q. Wu, Y. M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farner, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon”, Nature, 472, pp. 74–78 (2011)
[66] L. Liao, Y. C. Lin, M. Q. Bao, R. Cheng, J. W. Bai, Y. Liu, Y. Q. Qu, L. W. Kang, Y. Huang, and X. Duan, “High-speed graphene transistors with a self-aligned nanowire gate”, Nature, 467, 305–308 (2010)
[67] F. Schwierz, “Graphene transistors”, Nat. Nanotechnol., 5, pp. 487–496 (2010)
[68] F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene”, Science, 320, pp. 206–209 (2008)
[69] N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: An Emerging Electronic Material”, Adv. Mater., 24, pp. 5782–5825 (2012)
[70] A. J. Hong, E. B. Song, H. S. Yu, M. J. Allen, J. Kim, J. D. Fowler, J. K. Wassei, Y. Park, Y. Wang, J. Zou, R. B. Kaner, B. H. Weiller, and K. L. Wang, “Graphene Flash Memory”, ACS Nano, 5, pp. 7812–7817 (2011)
[71] S. Wang, J. Pu, D. S. H. Chan, B. J. Cho, and K. P. Loh, “Wide memory window in graphene oxide charge storage nodes”, Appl. Phys. Lett., 96, 143109 (2010)
[72] J. K. Park, K. J. Choi, J. H. Yeon, S. J. Lee, and C. H. Kim, “Large capacitance-voltage hysteresis loops in SiO[sub 2] films containing Ge nanocrystals produced by ion implantation and annealing”, Appl. Phys. Lett., 88, 071916 (2006)
[73] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell”, IEEE Electron Device Lett., 21, pp. 543–545 (2000)
[74] W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Nat. Mater., 12, 246–252 (2013)
[75] W. J. Yu, Y. Liu, H. Zhou, A. X. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials”, Nat. Nanotechnol., 8, pp. 952–958 (2013)
[76] L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Nonvoselov, and L. A. Ponomarenko, “Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures”, Science, 335, pp. 947–950 (2012)
[77] H. J. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung, and K. Kim, “Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier”, Science, 336, pp. 1140–1143 (2012)
[78] Yunseok Jang, Do Hwan Kim, Yeong Don Park, Jeong Ho Cho, Minkyu Hwang and Kilwon Cho, “Low-voltage and high-field-effect mobility organic transistors with a polymer insulator”, Appl. Phys. Lett., 88, 072101 (2006)
校內:2021-07-05公開