| 研究生: |
葉興松 Yeh, Hsin-Sung |
|---|---|
| 論文名稱: |
從全球綠能趨勢探討臺灣地熱電廠投資佈局-以A能源服務公司為例 Exploring Investment and Strategic Deployment of Geothermal Power Plants in Taiwan from the Global Green Energy Trend: A Case Study of Energy Services Company A |
| 指導教授: |
林軒竹
Lin, Hsuan-Chu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 臺灣地熱能源 、再生能源 、投資決策 、財務模型 |
| 外文關鍵詞: | Taiwan geothermal energy, Renewable energy, Investment decision-making, Financial model |
| 相關次數: | 點閱:45 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對全球氣候變遷的挑戰,各國正積極尋求可持續的能源解決方案以達成淨零碳排放的目標。臺灣,作為一個能源需求日益增加的國家,正尋求多元化再生能源解決方案,其中地熱能源因其可再生的特性而成為一個重要選項。本研究以A能源服務公司為例,深入探討臺灣地熱能源的開發潛力、投資策略與佈局。透過文獻回顧、政策分析與財務模型的應用,本文評估了地熱能源在臺灣的可行性、面臨的挑戰以及未來發展方向。結果顯示,雖然臺灣擁有豐富的地熱資源,但其開發受限於技術、政策等多方面的挑戰,致使地熱能源開發的初期成本高,並伴隨著較高的投資風險。本研究建議,隨著臺灣地熱能的逐步開發,未來能取得更多地熱能電廠發電數據後,配合統計方法的分析,以期在財務模型上的經濟可行性更加準確,以利配合政府政策支持與財務激勵,包括補貼、稅收減免和風險共擔機制,提高地熱能源開發的效率與可行性。
In the face of the escalating challenge of global climate change, nations around the world are increasingly prioritizing the pursuit of sustainable energy solutions as a means to achieve net-zero carbon emissions. Taiwan, in particular, is confronting the dual pressures of escalating energy demands and the imperative to reduce carbon emissions. As a result, the country is actively exploring a range of diversified renewable energy sources to ensure a more sustainable and secure energy future. Among these, geothermal energy stands out as a critical option due to its renewable and stable nature, which can potentially contribute significantly to Taiwan's energy mix.This study focuses on Energy Service Company A as a case study to delve into the development potential, investment strategies, and strategic layout of geothermal energy within Taiwan. Through a comprehensive approach that includes literature review, policy analysis, and the application of advanced financial models, this paper aims to assess the feasibility, challenges, and future development trajectory of geothermal energy in the Taiwanese context. The analysis also seeks to contribute to the broader discourse on renewable energy adoption in regions with similar geographic and economic conditions.Geothermal energy, as a form of renewable energy derived from the Earth's natural heat, offers several advantages, including its ability to provide a consistent and reliable power supply, unlike other renewable sources such as solar and wind, which are dependent on weather conditions. Taiwan, being situated in a geologically active region, possesses considerable geothermal resources, particularly in areas like Yilan and Hualien. Despite this potential, the development of geothermal energy in Taiwan has been relatively slow, primarily due to a combination of technical, economic, and policy-related challenges.One of the main obstacles identified in the development of geothermal energy in Taiwan is the high initial capital cost associated with exploration and drilling. Unlike other renewable energy sources, geothermal energy requires substantial upfront investment in identifying viable geothermal reservoirs, followed by the development of infrastructure to harness this energy. The inherent risks in exploration, such as the uncertainty in discovering a sufficient geothermal resource and the technical challenges in drilling, further exacerbate the financial risks for potential investors.Moreover, the regulatory and policy framework in Taiwan has historically been less supportive of geothermal energy development compared to other renewable energy sources like solar and wind. The lack of targeted subsidies, tax incentives, and risk-sharing mechanisms has deterred private investment in this sector. However, recent shifts in government policy suggest a growing recognition of the strategic importance of geothermal energy. The government's commitment to diversifying its energy portfolio and reducing its reliance on imported fossil fuels has led to increased interest in enhancing the policy environment to support geothermal development.This study's financial modeling approach evaluates the economic feasibility of geothermal projects under various scenarios, considering factors such as potential government subsidies, tax exemptions, and other financial incentives. The results indicate that while geothermal energy projects in Taiwan currently face high investment risks, particularly due to the significant upfront costs and long payback periods, these risks can be mitigated through well-designed government policies. For instance, the introduction of feed-in tariffs specific to geothermal energy, along with financial instruments that share exploration risks between the public and private sectors, could significantly enhance the attractiveness of geothermal investments.Furthermore, this study highlights the importance of long-term data collection from existing geothermal plants to improve the accuracy and reliability of financial models. As more geothermal power generation data becomes available, statistical methods can be applied to refine these models, thereby providing a more precise estimation of project viability. The integration of such data-driven insights into financial planning could lead to more informed investment decisions, ultimately enhancing the economic feasibility of geothermal projects.Looking ahead, the future development of geothermal energy in Taiwan will likely hinge on several key factors. First, continued government support in the form of favorable policies and financial incentives will be crucial in reducing investment risks and attracting private sector participation. Second, advancements in drilling and exploration technologies could lower the initial capital costs, making geothermal energy more competitive with other renewable energy sources. Third, the establishment of public-private partnerships could facilitate the sharing of risks and rewards, thereby encouraging more investment in the sector.In conclusion, while Taiwan's geothermal energy potential is considerable, its development is currently constrained by a range of technical and policy-related challenges. However, with targeted government intervention and the strategic application of financial models, these challenges can be addressed, paving the way for the more widespread adoption of geothermal energy. As Taiwan continues to seek sustainable energy solutions to meet its growing energy demands, geothermal energy, with its unique advantages, could play a pivotal role in the nation's transition to a low-carbon energy future. The findings of this study underscore the importance of continued research and policy development to unlock the full potential of geothermal energy in Taiwan, thereby contributing to the global efforts to combat climate change.
工業技術研究院. (2023). 地熱發電單一服務窗口. Www.geothermal-Taiwan.org.tw. https://www.geothermal-taiwan.org.tw/Apply/Documents_Show?id=3843
宋聖榮. (2021, January 25). 臺灣的地熱資源與分布 - CASE 報科學. CASE報科學. https://case.ntu.edu.tw/blog/?p=36112
國家再生能源憑證中心. (2024). 再生能源憑證制度及綠電交易介紹. Www.trec.org.tw. https://www.trec.org.tw/
國家發展委員會. (2022). 國家發展委員會. 國發會全球資訊網. https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76
張岱屏 , 劉啟稜, & 賴冠丞. (2023, March 8). 用熱發電系列之一:地熱探勘的望聞問切. 環境資訊中心. https://e-info.org.tw/node/236240
莊怡芳, 施清芳, & 陳中舜. (2013, March). 地熱發電技術發展現況、趨勢與瓶頸. 國家原子能科技研究院 | 能源資訊平台 | 能源簡析. https://www.nari.org.tw
陳俐陵. (2024). 地球之熱,臺灣之綠:臺灣地熱能源發展現況 | 專家專欄 | 專欄新知 | 能源教育資源總中心. Learnenergy.tw. https://learnenergy.tw/index.php?inter=knowledge&caid=4&id=939
經濟部能源署. (2022, June 27). 經濟部成立「地熱發電單一服務窗口」 加速推動我國地熱發展. 經濟部能源署(Energy Administration, Ministry of Economic Affairs, R.O.C.)全球資訊網. https://www.moeaea.gov.tw/ECW/populace/news/News.aspx?kind=1&menu_id=41&news_id=26100
經濟部能源署. (2024, February 20). The Policies and Strategies of Geothermal Energy in Taiwan. 2024臺灣國際地熱論壇.
鄒逸錚, & 陳俞婷. (2023). 從全球綠能發展契機,展望我國綠電市場發展及產業布局. 臺灣經濟研究月刊, 46(3). https://doi.org/10.29656/TERM.202303_46(3).0008
Al-Habaibeh, A., Athresh, A. P., & Parker, K. (2018). Performance analysis of using mine water from an abandoned coal mine for heating of buildings using an open loop based single shaft GSHP system. Applied Energy, 211, 393–402. https://doi.org/10.1016/j.apenergy.2017.11.025
Al-Shetwi, A. Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of the Total Environment, 822, 153645. https://doi.org/10.1016/j.scitotenv.2022.153645
Anderson, A., & Rezaie, B. (2019). Geothermal technology: Trends and potential role in a sustainable future. Applied Energy, 248, 18–34. https://doi.org/10.1016/j.apenergy.2019.04.102
ARENA. (2018). Geothermal Energy - Australian Renewable Energy Agency (ARENA). Australian Renewable Energy Agency. https://arena.gov.au/renewable-energy/geothermal/
Aslani, A., Naaranoja, M., & Zakeri, B. (2012). The prime criteria for private sector participation in renewable energy investment in the Middle East (case study: Iran). Renewable and Sustainable Energy Reviews, 16(4), 1977–1987. https://doi.org/10.1016/j.rser.2011.12.015
Azhgaliyeva, D., Beirne, J., & Mishra, R. (2022). What matters for private investment in renewable energy? Climate Policy, 1–17. https://doi.org/10.1080/14693062.2022.2069664
Bakken, T. H., Sundt, H., Ruud, A., & Harby, A. (2012). Development of Small Versus Large Hydropower in Norway– Comparison of Environmental Impacts. Energy Procedia, 20, 185–199. https://doi.org/10.1016/j.egypro.2012.03.019
Bath, S., Henein, J., Shastri, A., & EnerStrat Consulting UK. (2016). World Energy Resources | 2016. https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf
Beckers, K. F., Lukawski, M. Z., Anderson, B. J., Moore, M. C., & Tester, J. W. (2014). Levelized costs of electricity and direct-use heat from Enhanced Geothermal Systems. Journal of Renewable and Sustainable Energy, 6(1), 013141. https://doi.org/10.1063/1.4865575
Bella, G., Massidda, C., & Mattana, P. (2014). The relationship among CO2 emissions, electricity power consumption and GDP in OECD countries. Journal of Policy Modeling, 36(6), 970–985. https://doi.org/10.1016/j.jpolmod.2014.08.006
Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A. S., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., De Souza Noel Simas Barbosa, L., Fasihi, M., Khalili, S., Traber, T., & Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227(227), 120467. https://doi.org/10.1016/j.energy.2021.120467
Choudhary, P., & Srivastava , R. K. (2019). Sustainability perspectives- a review for solar photovoltaic trends and growth opportunities. Journal of Cleaner Production, 227, 589–612. https://doi.org/10.1016/j.jclepro.2019.04.107
Clauser, C., & Ewert, M. (2018). The renewables cost challenge: Levelized cost of geothermal electric energy compared to other sources of primary energy – Review and case study. Renewable and Sustainable Energy Reviews, 82, 3683–3693. https://doi.org/10.1016/j.rser.2017.10.095
Contini, M., Annunziata, E., Rizzi, F., & Frey, M. (2018). Business Strategies in Geothermal Energy Market: A Citizens-Based Perspective. Lecture Notes in Energy, 67, 39–53. https://doi.org/10.1007/978-3-319-78286-7_3
Dewi, M. P., Setiawan, A. D., Latief, Y., & Purwanto, W. W. (2022). Investment decisions under uncertainties in geothermal power generation. AIMS Energy, 10(4), 844–857. https://doi.org/10.3934/energy.2022038
Elum, Z. A., & Momodu, A. S. (2017). Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach. Renewable and Sustainable Energy Reviews, 76, 72–80. https://doi.org/10.1016/j.rser.2017.03.040
Farghali, M., Osman, A. I., Chen, Z., Abdelhaleem, A., Ihara, I., Mohamed, I. M. A., Yap, P.-S., & Rooney, D. W. (2023). Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review. Environmental Chemistry Letters, 21(3), 1381–1418. https://doi.org/10.1007/s10311-023-01587-1
Fujii, M., Tanabe, S., Yamada, M., Mishima, T., Sawadate, T., & Ohsawa, S. (2017). Assessment of the potential for developing mini/micro hydropower: A case study in Beppu City, Japan. Journal of Hydrology: Regional Studies, 11, 107–116. https://doi.org/10.1016/j.ejrh.2015.10.007
Gallup, D. L. (2009). Production engineering in geothermal technology: A review. Geothermics, 38(3), 326–334. https://doi.org/10.1016/j.geothermics.2009.03.001
Gehringer, M., & Loksha, V. (2012). Geothermal handbook : planning and financing power generation. Policycommons.net. https://policycommons.net/artifacts/1514743/geothermal-handbook/2189218/
Gifford , J. S., Grace , R. C., & Rickerson , W. H. (2011). Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States . National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy11osti/51093.pdf
Goldstein, A. H., & Braccio, R. (2014). 2013 Geothermal Technologies Market Trends Report. the U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) and the U.S. DOE Office of Energy Efficiency and Renewable Energy (EERE).
H. González-García, Francke, H., E. Huenges, & Sass, I. (2023). Financial performance analysis of the geothermal power station of Los Humeros, Mexico. Geothermics, 112, 102745–102745. https://doi.org/10.1016/j.geothermics.2023.102745
Haenel, R., Ladislaus Rybach, & L. Stegena. (1988). Fundamentals of Geothermics. Springer EBooks, 9–57. https://doi.org/10.1007/978-94-009-2847-3_2
Hassan, Q., Viktor, P., J. Al-Musawi, T., Mahmood Ali, B., Algburi, S., Alzoubi, H. M., Khudhair Al-Jiboory, A., Zuhair Sameen, A., Salman, H. M., & Jaszczur, M. (2024). The renewable energy role in the global energy Transformations. Renewable Energy Focus, 48, 100545. https://doi.org/10.1016/j.ref.2024.100545
IEA. (2011, June). Technology Roadmap - Geothermal Heat and Power – Analysis. IEA; International Energy Agency. https://www.iea.org/reports/technology-roadmap-geothermal-heat-and-power
IEA. (2023, July 11). Bioenergy. International Energy Agency. https://www.iea.org/energy-system/renewables/bioenergy
IEA. (2024). Renewables 2023. https://www.iea.org/reports/renewables-2023
IPCC. (2018). Global Warming of 1.5 oC. IPCC; Intergovernmental Panel on Climate Change. https://www.ipcc.ch/sr15/
IRENA. (2023a). Renewable power generation costs in 2022. International Renewable Energy Agency.
IRENA. (2023b). World Energy Transitions Outlook 2023. Www.irena.org. https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2023
IRENA, & IGA. (2023). Global geothermal market and technology assessment. In International Renewable Energy Agency. https://www.irena.org/Publications/2023/Feb/Global-geothermal-market-and-technology-assessment
Jacobson, M. Z., Delucchi, M. A., Bauer, Z. A. F., Goodman, S. C., Chapman, W. E., Cameron, M. A., Bozonnat, C., Chobadi, L., Clonts, H. A., Enevoldsen, P., Erwin, J. R., Fobi, S. N., Goldstrom, O. K., Hennessy, E. M., Liu, J., Lo, J., Meyer, C. B., Morris, S. B., Moy, K. R., & O’Neill, P. L. (2017). 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule, 1(1), 108–121. https://doi.org/10.1016/j.joule.2017.07.005
Kanoğlu, M., & Çengel, Y. A. (1999). Economic evaluation of geothermal power generation, heating, and cooling. Energy, 24(6), 501–509. https://doi.org/10.1016/s0360-5442(99)00016-x
Khan, N., Kalair, A., Abas, N., & Haider, A. (2017). Review of ocean tidal, wave and thermal energy technologies. Renewable and Sustainable Energy Reviews, 72, 590–604. https://doi.org/10.1016/j.rser.2017.01.079
Lee , D., & Toohey, B. (2010). Canadian geothermal code for public reporting: Canadian geothermal code committee.
Li, J., Pan, S.-Y., Kim, H., Linn, J. H., & Chiang, P.-C. (2015). Building green supply chains in eco-industrial parks towards a green economy: Barriers and strategies. Journal of Environmental Management, 162, 158–170. https://doi.org/10.1016/j.jenvman.2015.07.030
Li, K., Bian, H., Liu, C., Zhang, D., & Yang, Y. (2015). Comparison of geothermal with solar and wind power generation systems. Renewable and Sustainable Energy Reviews, 42, 1464–1474. https://doi.org/10.1016/j.rser.2014.10.049
Limberger, J., Boxem, T., Pluymaekers, M., Bruhn, D., Manzella, A., Calcagno, P., Beekman, F., Cloetingh, S., & van Wees, J.-D. (2018). Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization. Renewable and Sustainable Energy Reviews, 82, 961–975. https://doi.org/10.1016/j.rser.2017.09.084
Mekonnen, M. M., & Hoekstra, A. Y. (2012). The blue water footprint of electricity from hydropower. Hydrology and Earth System Sciences, 16(1), 179–187. https://doi.org/10.5194/hess-16-179-2012
Melikoglu, M. (2018). Current status and future of ocean energy sources: A global review. Ocean Engineering, 148, 563–573. https://doi.org/10.1016/j.oceaneng.2017.11.045
Mines, G., & Nathwani, J. (2013, February 11). Estimated power generation costs for EGS. Thirty-Eighth Workshop on Geothermal Reservoir Engineering , Stanford University, Stanford, California. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2013/Nathwani.pdf
Moore, M. C. (2016). Project permitting, finance, and economics for geothermal power generation. Elsevier EBooks, 499–533. https://doi.org/10.1016/b978-0-08-100337-4.00018-8
Moya, D., Aldás, C., & Kaparaju, P. (2018). Geothermal energy: Power plant technology and direct heat applications. Renewable and Sustainable Energy Reviews, 94, 889–901. https://doi.org/10.1016/j.rser.2018.06.047
NREL. (2013). CREST: Cost of Renewable Energy Spreadsheet Tool | Energy Analysis | NREL. National Renewable Energy Laboratory. https://www.nrel.gov/analysis/crest.html
Olasolo, P., Juárez, M. C., Morales, M. P., D´Amico, S., & Liarte, I. A. (2016). Enhanced geothermal systems (EGS): A review. Renewable and Sustainable Energy Reviews, 56, 133–144. https://doi.org/10.1016/j.rser.2015.11.031
Osman, A. I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., Rooney, D. W., & Yap, P.-S. (2022). Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environmental Chemistry Letters, 21, 741–764. https://doi.org/10.1007/s10311-022-01532-8
Oteng, D., Zuo, J., & Sharifi, E. (2021). A scientometric review of trends in solar photovoltaic waste management research. Solar Energy, 224, 545–562. https://doi.org/10.1016/j.solener.2021.06.036
Ozorhon, B., Batmaz, A., & Caglayan, S. (2018). Generating a framework to facilitate decision making in renewable energy investments. Renewable and Sustainable Energy Reviews, 95, 217–226. https://doi.org/10.1016/j.rser.2018.07.035
Pan, S.-Y., Gao, M., Shah, K. J., Zheng, J., Pei, S.-L., & Chiang, P.-C. (2019). Establishment of enhanced geothermal energy utilization plans: Barriers and strategies. Renewable Energy, 132, 19–32. https://doi.org/10.1016/j.renene.2018.07.126
Reber, T. J., Beckers, K. F., & Tester, J. W. (2014). The transformative potential of geothermal heating in the U.S. energy market: A regional study of New York and Pennsylvania. Energy Policy, 70, 30–44. https://doi.org/10.1016/j.enpol.2014.03.004
REN21. (2023). RENEWABLES 2023 GLOBAL STATUS REPORT. https://www.ren21.net/gsr-2023/
Sanchez-Alfaro, P., Sielfeld, G., Campen, B. V., Dobson, P., Fuentes, V., Reed, A., Palma-Behnke, R., & Morata, D. (2015). Geothermal barriers, policies and economics in Chile – Lessons for the Andes. Renewable and Sustainable Energy Reviews, 51, 1390–1401. https://doi.org/10.1016/j.rser.2015.07.001
Shortall, R., Davidsdottir, B., & Axelsson, G. (2015). Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks. Renewable and Sustainable Energy Reviews, 44, 391–406. https://doi.org/10.1016/j.rser.2014.12.020
Simshauser, P., & Ariyaratnam, J. (2014). What is normal profit for power generation? Journal of Financial Economic Policy, 6(2), 152–178. https://doi.org/10.1108/jfep-09-2013-0045
Song, X., Shi, Y., Li, G., Yang, R., Wang, G., Zheng, R., Li, J., & Lyu, Z. (2018). Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells. Applied Energy, 218, 325–337. https://doi.org/10.1016/j.apenergy.2018.02.172
Stefánsson, V. (2002). Investment cost for geothermal power plants. Geothermics, 31(2), 263–272. https://doi.org/10.1016/s0375-6505(01)00018-9
Strantzali, E., & Aravossis, K. (2016). Decision making in renewable energy investments: A review. Renewable and Sustainable Energy Reviews, 55, 885–898. https://doi.org/10.1016/j.rser.2015.11.021
The U.S. Department of Energy. (2024). Next-Generation Geothermal Power. In Pathways to Commercial Liftoff. https://liftoff.energy.gov/next-generation-geothermal-power/
Thorsteinsson, H. H., & Tester, J. W. (2010). Barriers and enablers to geothermal district heating system development in the United States. Energy Policy, 38(2), 803–813. https://doi.org/10.1016/j.enpol.2009.10.025
Ueckerdt, F., Hirth, L., Luderer, G., & Edenhofer, O. (2013). System LCOE: What are the costs of variable renewables? Energy, 63, 61–75. https://doi.org/10.1016/j.energy.2013.10.072
Vargas, S. A., Esteves, G. R. T., Maçaira, P. M., Bastos, B. Q., Oliveira, F. L. C., & Souza, R. C. (2019). Wind power generation: A review and a research agenda. Journal of Cleaner Production, 218, 850–870. https://doi.org/10.1016/j.jclepro.2019.02.015
Wang, J.-J., Jing, Y.-Y., Zhang, C.-F., & Zhao, J.-H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. https://doi.org/10.1016/j.rser.2009.06.021
Wang, L., Fan, Y. V., Jiang, P., Varbanov, P. S., & Klemeš, J. J. (2021). Virtual water and CO2 emission footprints embodied in power trade: EU-27. Energy Policy, 155, 112348. https://doi.org/10.1016/j.enpol.2021.112348
Wang, X., & Alsaleh, M. (2023). Determinants of Geothermal Power Sustainability Development: Do Global Competitiveness Markets Matter? Sustainability, 15(4), 3747. https://doi.org/10.3390/su15043747
WEC. (2016). World energy resources: geothermal. In World Energy Council . https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf
Wees, J.-D. . van, Kronimus, A., Putten, M. van, Pluymaekers, M. P. D., Mijnlieff, H., Hooff, P. van, Obdam, A., & Kramers, L. (2012). Geothermal aquifer performance assessment for direct heat production – Methodology and application to Rotliegend aquifers. Netherlands Journal of Geosciences, 91(4), 651–665. https://doi.org/10.1017/S0016774600000433
Wiser, R. H., & Pickle, S. J. (1998). Financing investments in renewable energy : the impacts of policy design. Renewable and Sustainable Energy Reviews, 2(4), 361–386. https://doi.org/10.1016/s1364-0321(98)00007-0
World Bank. (2012). Geothermal Handbook: Planning and Financing Power Generation. Openknowledge.worldbank.org. https://hdl.handle.net/10986/23712
Xia, L., & Zhang, Y. (2019). An overview of world geothermal power generation and a case study on China—The resource and market perspective. Renewable and Sustainable Energy Reviews, 112, 411–423. https://doi.org/10.1016/j.rser.2019.05.058
Zappa, W., Junginger, M., & van den Broek, M. (2019). Is a 100% renewable European power system feasible by 2050? Applied Energy, 233-234, 1027–1050. https://doi.org/10.1016/j.apenergy.2018.08.109
Zheng, B., Xu, J., Ni, T., & Li, M. (2015). Geothermal energy utilization trends from a technological paradigm perspective. Renewable Energy, 77, 430–441. https://doi.org/10.1016/j.renene.2014.12.035
Zhu, J., Hu, K., Lu, X., Huang, X., Liu, K., & Wu, X. (2015). A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy, 93, 466–483. https://doi.org/10.1016/j.energy.2015.08.098
校內:2029-08-19公開