| 研究生: |
楊欣曄 Yang, Hsin-Yeh |
|---|---|
| 論文名稱: |
基於關連結構的雙變量退化模型及其推論 Inference of Bivariate Degradation Model Based on Copula |
| 指導教授: |
鄭順林
Jeng, Shuen-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 貝氏 、自助法 、退化資料 、關連結構 、退化路徑模型 |
| 外文關鍵詞: | Bayesian, bootstrap, degradation data, copula, degradation path model |
| 相關次數: | 點閱:93 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究最主要的目的為利用退化資料幫助預測產品未來失效機率並建構預測區間。這些失效機率的預測區間可以提供決策者決定備料數量或是維修時間的參考。如果決策者可以較準確地預測產品未來失效機率,那麼備料數量可以減少或是維修時間不會過早或是過晚,庫存成本或是維修預算也可以相對降低。我們使用累積失效機率來評估產品表現,並透過區間量化可能的預測誤差。
退化資料可以想成為一條條退化路徑或是隨機過程,在此我們考慮了隨機效果的退化路徑模型。當退化路徑的係數超過兩個,且彼此相依的情況,一般常見的做法為假設多變量常態分佈。但實際情況常會發現這樣假設不成立。本研究主要的貢獻為結合關連結構模型來幫助建立多變量分布函數,而得到失效機率的估計,藉由自助法建構預測區間。
我們將我們提出的方法應用到國道路面糙度的資料上。
In this study, the main goal is estimating failure probability of future products with degradation data and constructing prediction intervals. According to these prediction intervals, decision maker may utilize the bounds of prediction intervals to decide how many spare parts are needed or when to maintain
the products. If they can precisely predict the failure probability of products, they may be able to keep an appropriate stock level or maintain products at appropriate time. This may reduce the inventory cost or maintenance budget. We use cumulative failure rate to monitor the performance of components of the products. The possible prediction error is evaluated by an interval.
Degradation data can be described by degradation paths or stochastic processes. Here we consider the random effect degradation path model. When coefficients of a path are more than two and correlated, a general procedure is assuming a multivariate normal distribution of the coefficients. However this assumption may be violated in real case. The contribution of our work is that we combine Copula model to construct multivariate distribution function and estimate the failure probability. The prediction intervals are constructed through bootstrap approach. We apply our proposed methodologies to roughness degradation data of highway pavement.
Attoh-Okine, N. O. (2013), “Pair-copulas in infrastructure multivariate dependence
modeling”, Construction and Building Materials, 49, 903–911.
Brooks, S. P. and Gelman, A. (1998), “General methods for monitoring convergence
of iterative simulations”, Journal of Computational and Graphical
Statistics, 7(4), 434–455.
Cheng, Y.-S. and Peng, C.-Y. (2012), “Integrated degradation models in r
using idemo”, Journal of Statistical Software, 49(2), 1–22.
Cowles, M. K. and Carlin, B. P. (1996), “Markov chain monte carlo convergence
diagnostics: A comparative review”, Journal of the American Statistical
Association, 91(434), 883–904.
Freitas, M. A., dos Santos, T. R., Pires, M. C., and Colosimo, E. A. (2010), “A
closer look at degradation models: Classical and bayesian approaches”, in
M. S. Nikulin, N. Limnios, N. Balakrishnan,W. Kahle, and C. Huber-Carol
(eds.), Advances in Degradation Modeling, Springer.
Genest, C. and Rémillard, B. (2008), “Validity of the parametric bootstrap
for goodness-of-fit testing in semiparametric models”, Annales de l’Institut
Henri Poincaré, Probabilités et Statistiques, 44, 1096–1127.
Hamada, M. S., Wilson, A. G., Reese, C. S., and Martz, H. F. (2008),
Bayesian Reliability, Springer.
Hao, H.-B. and Su, C. (2014), “Bivariate nonlinear diffusion degradation process
modeling via copula and mcmc”, Mathematical Problems in Engineering,
2014, 1–11.
Hong, H. P. and Wang, S. S. (2003), “Stochastic modeling of pavement performance”,
International Journal of Pavement Engineering, 4(4), 235–243.
Jia, X.-J., Wang, L.-Y., and Wei, C.-H. (2014), “Reliability research of dependent
failure systems using copula”, Communications in Statistics - Simulation
and Computation, 43(8), 1838–1851.
Khraibani, H., Lorino, T., Lepert, P., and Marion, J.-M. (2012), “Nonlinear
mixed-effects model for the evaluation and prediction of pavement deterioration”,
Journal of Transportation Engineering, 138(2), 149–156.
Li, M. and Meeker, W. Q. (2014), “Application of bayesian methods in relaibility
data analyses”, Journal of Quality Technology, 46(1), 1–23.
Li, M., Meeker, W. Q., and Thompson, R. B. (2014), “Physical modelassisted
probability of detection of flaws in titanium forgings using ultrasonic
nondestructive evaluation”, Technometrics, 56(1), 78–91.
Liu, Y.-H. (2014), “Evaluation the reliability of pavement service life using
roughness degradation data”, Master’s thesis, National Cheng Kung University.
Lorino, T., Lepert, P., Marion, J.-M., and Khraibano, H. (2012), “Modeling
the road degradation process: Non-linear mixed effects models for correlation
and heteroscedasticity of pavement longitudinal data”, Procedia -
Social and Behavioral Sciences, 48, 21–29.
Lu, C. J. and Meeker,W. Q. (1993), “Using degradation measures to estimate
a time-to-failure distribution”, Technometrics, 35(2), 161–174.
Meeker, W. Q. (2010), “Trends in the statistical assessment of reliability”, in
M. S. Nikulin, N. Limnios, N. Balakrishnan,W. Kahle, and C. Huber-Carol
(eds.), Advances in Degradation Modeling, Springer.
Meeker, W. Q. and Escobar, L. A. (1998), Statistical methods for reliability
data, Wiley New York.
Silva, R. and Gramacy, R. B. (2009), “Mcmc methods for bayesian mixtures
of copulas”, .
Tang, X.-S., Li, D.-Q., Zhou, C.-B., and Phoon, K.-K. (2015), “Copula-based
approaches for evaluating slope reliability under incomplete probability information”,
Structural Safety, 52, 90–99.
Tang, X. S., Li, D. Q., Zhou, C. B., and Zhang, L. M. (2013), “Bivariate distribution
models using copulas for reliability analysis”, Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
227(5), 499–512.
Wu, J., Wang, X., and Walker, S. G. (2013), “Bayesian nonparametric inference
for a multivariate copula function”, Methodology and Computing in
Applied Probability, 16(3), 747–763.