簡易檢索 / 詳目顯示

研究生: 陳維昇
Chen, Wei-Sheng
論文名稱: 建立以MAVS為標的之抗病毒藥物篩選系統
An antiviral drug screening system by targeting MAVS
指導教授: 賴明詔
Lai, Michael M.C.
張志鵬
Chang, Chih-Peng
余佳益
Yu, Chia-Yi
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 54
中文關鍵詞: 粒線體抗病毒蛋白質抗病毒藥物篩選系統干擾素
外文關鍵詞: Mitochondrial antiviral signaling protein, MAVS, antiviral screening system, interferon, IFN
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了發展以調控先天免疫作為對抗病毒的策略,我們選擇廣泛分布在細胞中的粒線體抗病毒蛋白(MAVS)作為標的建立抗病毒藥物篩選系統,想藉由此系統篩選出可影響MAVS所調控的干擾素誘發訊號之標的基因及藥物。首先,我們建立了誘導型myc-MAVS基因表現系統,並挑選出兩株myc-MAVS表現時間有所差異細胞株(A549+on/myc-MAVS#10, #19),其可經由doxycycline(Dox)誘導表現出具功能性的myc-MAVS蛋白質,並引起下游的干擾素誘發訊號(IFN-induction signal)、並造成細胞死亡。藉由實驗結果我們發現在A549+on/myc-MAVS#10中調降 autophagy related 5(ATG5)基因表現,或加入chloroquine(CQ)可增強經Dox誘導後MAVS所調控的干擾素誘發訊號。CQ還可增強A549+on/myc-MAVS#10經Dox誘導後-干擾素的mRNA表現量與分泌量。而A549+on/myc-MAVS#19分別以辛德畢斯病毒(sindbis virus; SINV)、水泡性口炎病毒(vesicular stomatitis virus; VSV)及登革病毒(DENV)感染後加入藥物處理,發現同時經Dox及CQ處理之細胞皆有最佳抗病毒效果。這代表CQ為具有潛力之增強先天免疫對抗病毒的藥物。綜合以上結果顯示,表現shATG5及chloroquine(CQ)可分別作為藥物/基因篩選系統中的對照組。藉由未來持續建構高通量抗病毒藥物/基因篩選系統,我們期望能篩選出增強先天免疫力的廣效性抗病毒藥物。

    Virus infection is a thorny problem in clinic because of limited therapeutics for each pathogenic virus. The mitochondrial antiviral signaling (MAVS) is a cellular adaptor protein that mediates interferon (IFN) induction and death signals in response to the infection of various viruses. To manipulate MAVS-triggered antiviral signaling, we established a stable cell line A549+on/myc-MAVS, in which myc-MAVS is ectopically expressed in the presence of doxycycline (Dox). As expected, two clones of the A549+on/myc-MAVS cells, which expressed myc-MAVS and triggered IFN-induction and cell death signals with different kinetics, were selected in this study. We found that silencing autophagy related 5 (ATG5) gene expression or administration of chloroquine (CQ) could facilitate myc-MAVS-triggered antiviral signaling in A549+on/myc-MAVS. Moreover, the levels of intracellular IFN mRNA and secreted IFN proteins were further enhanced by CQ in A549+on/myc-MAVS cells with Dox treatment. The conditioned culture media derived from A549+on/myc-MAVS with both CQ and Dox treatment showed the highest antiviral activity among the others. Importantly, this CQ-enhanced MAVS signaling functionally suppressed the replication of various viruses, including dengue, sindbis, and vesicular stomatitis virus, although the exact mechanism remain to be determined. Therefore shATG5 expression and CQ treatment could serve as the control gene and chemical respectively in a MAVS-targeted antiviral drug/gene screen system. Based on the broad-spectrum antiviral activity of the IFN system, we expect this new screening system could rapidly provide antiviral candidates against variety of pathogenic viruses in the future.

    中文摘要 I 英文延伸摘要II 誌謝 VI 目錄 VII 圖示目錄 IX 緒論 1 一、先天免疫與病毒 1 二、MAVS(mitochondrial antiviral signaling)基本特徵 1 三、經RLRs-MAVS的訊息傳遞路徑 2 四、調控MAVS其及所調控的訊息傳遞路徑 4 五、與MAVS相關抗病毒藥物篩選系統 6 六、研究動機 7 材料與方法 8 一、細胞株及培養方式 8 二、病毒 8 三、質體 8 四、shRNA(來源:RNAiCore) 9 五、質體製備 9 六、核酸轉染 10 七、RNA純化 10 八、反轉錄酶-即時聚合酶連鎖反應(qRT-PCR) 11 九、細胞毒性分析 11 十、冷光酶分析 12 十一、病毒斑分析 12 十二、Trichloroacetic acid(TCA)蛋白質沉澱 12 十三、西方墨點法 13 十四、藥品及試劑 13 十五、抗體 14 十六、數據統計及分析 15 實驗結果 16 一、在人類肺癌細胞A549中建立去氧羥四環黴素(Doxycycline;Dox)誘導myc-MAVS基因表現系統 16 二、挑選出兩株myc-MAVS表現可受調控之穩定細胞株,以Dox誘導後表現出具功能性的myc-MAVS蛋白質、引起下游的干擾素誘發訊號(IFN-induction signal)、及促進細胞死亡 16 三、建立ATG5(autophagy related 5)蛋白質表現量降低的穩定細胞株以尋找標的基因對照組。 18 四、表現shATG5可增強干擾素誘發訊號 18 五、CQ可作為篩藥系統中之藥物對照組,其可增強MAVS所調控的干擾素誘發訊號但與MAVS表現量無關 19 六、CQ可增強MAVS所調控的干擾素誘發訊號使細胞分泌大量的beta-干擾素 20 七、A549+on/myc-MAVS#10同時經CQ及Dox處理後,其上清液可誘發較強的干擾素訊息路徑(IFN-signaling) 21 八、CQ能增強經Dox誘導後的細胞分泌出更多具有功能的beta干擾素是來自於增加了beta干擾素mRNA表現量 23 九、同時經CQ及Dox處理的A549+on/myc-MAVS#19細胞具有較強的抗sindbis virus(SINV)能力 23 十、同時經CQ及Dox處理的A549+on/myc-MAVS#19具有較強的抗vesicular stomatitis virus(VSV)能力。 24 十一、同時經CQ及Dox處理的A549+on/myc-MAVS#19具有較強的抗登革病毒(DENV)能力。 25 十二、結論 25 討論 27 參考文獻 33 圖示 41 附錄一 54

    1. Aguirre, S., Maestre, A.M., Pagni, S., Patel, J.R., Savage, T., Gutman, D., Maringer, K., Bernal-Rubio, D., Shabman, R.S., Simon, V., et al. (2012). DENV Inhibits Type I IFN Production in Infected Cells by Cleaving Human STING. PLOS Pathogens 8, e1002934.
    2. Arimoto, K.-i., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proceedings of the National Academy of Sciences of the United States of America 104, 7500-7505.
    3. Bender, S., Reuter, A., Eberle, F., Einhorn, E., Binder, M., and Bartenschlager, R. (2015). Activation of Type I and III Interferon Response by Mitochondrial and Peroxisomal MAVS and Inhibition by Hepatitis C Virus. PLOS Pathogens 11, e1005264.
    4. Boonyasuppayakorn, S., Reichert, E.D., Manzano, M., Nagarajan, K., and Padmanabhan, R. (2014). Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity. Antiviral research 106, 125-134.
    5. Borges, M.C., Castro, L.A., and da Fonseca, B.A.L. (2013). Chloroquine use improves dengue-related symptoms. Memórias do Instituto Oswaldo Cruz 108, 596-599.
    6. Brubaker, Sky W., Gauthier, Anna E., Mills, Eric W., Ingolia, Nicholas T., and Kagan, Jonathan C. A bicistronic MAVS transcript highlights a class of truncated variants in antiviral immunity. Cell 156, 800-811.
    7. Castanier, C., Garcin, D., Vazquez, A., and Arnoult, D. (2010). Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Reports 11, 133-138.
    8. Chan, Y.-L., Chang, T.-H., Liao, C.-L., and Lin, Y.-L. (2008). The Cellular Antiviral Protein Viperin Is Attenuated by Proteasome-Mediated Protein Degradation in Japanese Encephalitis Virus-Infected Cells. Journal of Virology 82, 10455-10464.
    9. Dalrymple, N.A., Cimica, V., and Mackow, E.R. (2015). Dengue Virus NS Proteins Inhibit RIG-I/MAVS Signaling by Blocking TBK1/IRF3 Phosphorylation: Dengue Virus Serotype 1 NS4A Is a Unique Interferon-Regulating Virulence Determinant. mBio 6, e00553-00515.
    10. Darnell, J.E., Kerr, I.M., and Stark, G.R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421.
    11. Delvecchio, R., Higa, L.M., Pezzuto, P., Valadao, A.L., Garcez, P.P., Monteiro, F.L., Loiola, E.C., Rehen, S., Campanati, L., de Aguiar, R.S., et al. (2016). Chloroquine inhibits Zika Virus infection in different cellular models. bioRxiv. http://dx.doi.org/10.1101/051268
    12. Ding, W.-X., and Yin, X.-M. (2012). Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry 393, 547-564.
    13. Dixit, E., Boulant, S., Zhang, Y., Lee, A.S., Odendall, C., Shum, B., Hacohen, N., Chen, Z.J., Whelan, S.P., Fransen, M., et al. (2010). Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141, 668-681.
    14. El Maadidi, S., Faletti, L., Berg, B., Wenzl, C., Wieland, K., Chen, Z.J., Maurer, U., and Borner, C. (2014). A Novel Mitochondrial MAVS/Caspase-8 Platform Links RNA Virus–Induced Innate Antiviral Signaling to Bax/Bak-Independent Apoptosis. The Journal of Immunology 192, 1171-1183.
    15. Farias, K.J.S., Machado, P.R.L., and da Fonseca, B.A.L. (2013). Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells. The Scientific World Journal 2013, 282734.
    16. Farias, K.J.S., Machado, P.R.L., de Almeida Junior, R.F., de Aquino, A.A., and da Fonseca, B.A.L. (2014). Chloroquine interferes with dengue-2 virus replication in U937 cells. Microbiology and Immunology 58, 318-326.
    17. Fu, Q.-X., Wang, L.-C., Jia, S.-Z., Gao, B., Zhou, Y., Du, J., Wang, Y.-L., Wang, X.-H., Peng, J.-C., and Zhan, L.-S. (2010). Screening compounds against HCV based on MAVS/IFN-β pathway in a replicon model. World Journal of Gastroenterology : WJG 16, 5582-5587.
    18. Gürtler, C., and Bowie, A.G. (2013). Innate immune detection of microbial nucleic acids. Trends in Microbiology 21, 413-420.
    19. Glick, D., Barth, S., and Macleod, K.F. (2010). Autophagy: cellular and molecular mechanisms. The Journal of Pathology 221, 3-12.
    20. Heim, M.H. (2013). 25 years of interferon-based treatment of chronic hepatitis C: an epoch coming to an end. Nature Reviews Immunology 13, 535-542.
    21. Horner, S.M., Liu, H.M., Park, H.S., Briley, J., and Gale, M. (2011). Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America 108, 14590-14595.
    22. Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.-X., and Chen, Z.J. (2011). MAVS Forms Functional Prion-Like Aggregates To Activate and Propagate Antiviral Innate Immune Response. Cell 146, 448-461.
    23. Huang, P.-Y., Guo, J.-H., and Hwang, L.-H. (2012). Oncolytic Sindbis Virus Targets Tumors Defective in the Interferon Response and Induces Significant Bystander Antitumor Immunity In Vivo. Molecular Therapy 20, 298-305.
    24. Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S.O., Masuda, K., Otera, H., Nakanishi, Y., Nonaka, I., Goto, Y.-i., et al. (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature Cell Biology 11, 958-966.
    25. Ishikawa, H., and Barber, G.N. (2008). STING an Endoplasmic Reticulum Adaptor that Facilitates Innate Immune Signaling. Nature 455, 674-678.
    26. Jiang, X., Kinch, L., Brautigam, C.A., Chen, X., Du, F., Grishin, N., and Chen, Z.J. (2012). Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity 36, 959-973.
    27. Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K.-Q., Ishii, K.J., Kawai, T., Akira, S., Suzuki, K., et al. (2007). The Atg5–Atg12 conjugate associates with innate antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America 104, 14050-14055.
    28. Kawai, T., and Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition ARTICLE. International Immunology 21, 317-337.
    29. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature Immunology 6, 981-988.
    30. Kim, H.-Y., Li, X., Jones, C.T., Rice, C.M., Garcia, J.-M., Genovesio, A., Hansen, M.A.E., and Windisch, M.P. (2013). Development of a multiplex phenotypic cell-based high throughput screening assay to identify novel hepatitis C virus antivirals. Antiviral Research 99, 6-11.
    31. Koyama, S., Ishii, K.J., Coban, C., and Akira, S. (2008). Innate immune response to viral infection. Cytokine 43, 336-341.
    32. Lampertico, P. (2015). The royal wedding in chronic hepatitis B: The haves and the have‐nots for the combination of pegylated interferon and nucleos (t) ide therapy. Hepatology 61, 1459-1461.
    33. Lee, M.S., and Kim, Y.-J. (2007). Signaling Pathways Downstream of Pattern-Recognition Receptors and Their Cross Talk. Annual Review of Biochemistry 76, 447-480.
    34. Lee, S.-J., Silverman, E., and Bargman, J.M. (2011). The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nature Reviews Nephrology 7, 718-729.
    35. Lei, Y., Moore, C.B., Liesman, R.M., O'Connor, B.P., Bergstralh, D.T., Chen, Z.J., Pickles, R.J., and Ting, J.P.Y. (2009). MAVS-Mediated Apoptosis and Its Inhibition by Viral Proteins. PLOS ONE 4, e5466.
    36. Lemasters, J.J. (2005). Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging. Rejuvenation Research 8, 3-5.
    37. Lester, S.N., and Li, K. (2014). Toll-like receptors in antiviral innate immunity. Journal of Molecular Biology 426, 1246-1264.
    38. Li, S., Wilkinson, M., Xia, X., David, M., Xu, L., Purkel-Sutton, A., and Bhardwaj, A. (2005a). Induction of IFN-regulated factors and antitumoral surveillance by transfected placebo plasmid DNA. Molecular Therapy 11, 112-119.
    39. Li, X.-D., Sun, L., Seth, R.B., Pineda, G., and Chen, Z.J. (2005b). Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proceedings of the National Academy of Sciences of the United States of America 102, 17717-17722.
    40. Littler, E., and Oberg, B. (2005). Achievements and challenges in antiviral drug discovery. Antiviral Chemistry and Chemotherapy 16, 155-168.
    41. Liu, S., Chen, J., Cai, X., Wu, J., Chen, X., Wu, Y.-T., Sun, L., and Chen, Z.J. (2013). MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2, e00785.
    42. Loo, Y.-M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L., Akira, S., Gill, M.A., García-Sastre, A., and Katze, M.G. (2008). Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. Journal of Virology 82, 335-345.
    43. MacLeod, H., and Wetzler, L.M. (2007). T Cell Activation by TLRs: A Role for TLRs in the Adaptive Immune Response. Science Signaling 2007, pe48-pe48.
    44. Mao, H.-T., Wang, Y., Cai, J., Meng, J.-L., Zhou, Y., Pan, Y., Qian, X.-P., Zhang, Y., and Zhang, J. (2016). HACE1 Negatively Regulates Virus-Triggered Type I IFN Signaling by Impeding the Formation of the MAVS-TRAF3 Complex. Viruses 8, 146.
    45. Mazzon, M., Jones, M., Davidson, A., Chain, B., and Jacobs, M. (2009). Dengue Virus NS5 Inhibits Interferon-α Signaling by Blocking Signal Transducer and Activator of Transcription 2 Phosphorylation. Journal of Infectious Diseases 200, 1261-1270.
    46. Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature 449, 819-826.
    47. Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167-1172.
    48. Meylan, E., and Tschopp, J. (2006). Toll-Like Receptors and RNA Helicases: Two Parallel Ways to Trigger Antiviral Responses. Molecular Cell 22, 561-569.
    49. Minassian, A., Zhang, J., He, S., Zhao, J., Zandi, E., Saito, T., Liang, C., and Feng, P. (2015). An Internally Translated MAVS Variant Exposes Its Amino-terminal TRAF-Binding Motifs to Deregulate Interferon Induction. PLOS Pathogens 11, e1005060.
    50. Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398.
    51. Mizushima, N., Yoshimorim, T., and Levine, B. (2010). Methods in Mammalian Autophagy Research. Cell 140, 313-326.
    52. Muñoz-Jordán, J.L., Sánchez-Burgos, G.G., Laurent-Rolle, M., and García-Sastre, A. (2003). Inhibition of interferon signaling by dengue virus. Proceedings of the National Academy of Sciences of the United States of America 100, 14333-14338.
    53. Neupert, W., and Herrmann, J.M. (2007). Translocation of Proteins into Mitochondria. Annual Review of Biochemistry 76, 723-749.
    54. Odendall, C., Dixit, E., Stavru, F., Bierne, H., Franz, K.M., Durbin, A.F., Boulant, S., Gehrke, L., Cossart, P., and Kagan, J.C. (2014). Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nature Immunology 15, 717-726.
    55. Onoguchi, K., Onomoto, K., Takamatsu, S., Jogi, M., Takemura, A., Morimoto, S., Julkunen, I., Namiki, H., Yoneyama, M., and Fujita, T. (2010). Virus-Infection or 5′ppp-RNA Activates Antiviral Signal through Redistribution of IPS-1 Mediated by MFN1. PLOS Pathogens 6, e1001012.
    56. Pan, Y., Li, R., Meng, J.-L., Mao, H.-T., Zhang, Y., and Zhang, J. (2014). Smurf2 Negatively Modulates RIG-I–Dependent Antiviral Response by Targeting VISA/MAVS for Ubiquitination and Degradation. Journal of Immunology 192, 4758-4764.
    57. Potter, J.A., Randall, R.E., and Taylor, G.L. (2008). Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain. BMC Structural Biology 8, 1-10.
    58. Rajput, A., Kovalenko, A., Bogdanov, K., Yang, S.-H., Kang, T.-B., Kim, J.-C., Du, J., and Wallach, D. (2011). RIG-I RNA Helicase Activation of IRF3 Transcription Factor Is Negatively Regulated by Caspase-8-Mediated Cleavage of the RIP1 Protein. Immunity 34, 340-351.
    59. Randolph, V.B., Winkler, G., and Stollar, V. (1990). Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 174, 450-458.
    60. Ranjith-Kumar, C., Murali, A., Dong, W., Srisathiyanarayanan, D., Vaughan, R., Ortiz-Alacantara, J., Bhardwaj, K., Li, X., Li, P., and Kao, C.C. (2009). Agonist and antagonist recognition by RIG-I, a cytoplasmic innate immunity receptor. Journal of Biological Chemistry 284, 1155-1165.
    61. Rebsamen, M., Meylan, E., Curran, J., and Tschopp, J. (2008). The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases. Cell Death & Differentiation 15, 1804-1811.
    62. Savarino, A., Boelaert, J.R., Cassone, A., Majori, G., and Cauda, R. (2003). Effects of chloroquine on viral infections: an old drug against today's diseases. The Lancet Infectious Diseases 3, 722-727.
    63. Scott, I., and Norris, K.L. (2008). The Mitochondrial Antiviral Signaling Protein, MAVS, Is Cleaved During Apoptosis. Biochemical and Biophysical Research Communications 375, 101-106.
    64. Seth, R.B., Sun, L., Ea, C.-K., and Chen, Z.J. (2005). Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3. Cell 122, 669-682.
    65. Simmons, C.P., Farrar, J.J., van Vinh Chau, N., and Wills, B. (2012). Dengue. New England Journal of Medicine 366, 1423-1432.
    66. Takeuchi, O., and Akira, S. (2007). Recognition of viruses by innate immunity. Immunological Reviews 220, 214-224.
    67. Takeuchi, O., and Akira, S. (2009). Innate immunity to virus infection. Immunological Reviews 227, 75-86.
    68. Terrault, N.A., Bzowej, N.H., Chang, K.M., Hwang, J.P., Jonas, M.M., and Murad, M.H. (2016). AASLD guidelines for treatment of chronic hepatitis B. Hepatology 63, 261-283.
    69. Tricou, V., Minh, N.N., Van, T.P., Lee, S.J., Farrar, J., Wills, B., Tran, H.T., and Simmons, C.P. (2010). A Randomized Controlled Trial of Chloroquine for the Treatment of Dengue in Vietnamese Adults. PLOS Neglected Tropical Diseases 4, e785.
    70. van der Vries, E., Schutten, M., Fraaij, P., Boucher, C., and Osterhaus, A. (2013). Chapter Six - Influenza Virus Resistance to Antiviral Therapy. In Advances in Pharmacology, (Academic Press), pp. 217-246.
    71. Wang, L.-F., Lin, Y.-S., Huang, N.-C., Yu, C.-Y., Tsai, W.-L., Chen, J.-J., Kubota, T., Matsuoka, M., Chen, S.-R., Yang, C.-S., et al. (2015). Hydroxychloroquine-Inhibited Dengue Virus Is Associated with Host Defense Machinery. Journal of Interferon & Cytokine Research 35, 143-156.
    72. Wang, Y., Tong, X., and Ye, X. (2012). Ndfip1 Negatively Regulates RIG-I–Dependent Immune Signaling by Enhancing E3 Ligase Smurf1-Mediated MAVS Degradation. Journal of Immunology 189, 5304-5313.
    73. Xia, M., Gonzalez, P., Li, C., Meng, G., Jiang, A., Wang, H., Gao, Q., Debatin, K.-M., Beltinger, C., and Wei, J. (2014). Mitophagy Enhances Oncolytic Measles Virus Replication by Mitigating DDX58/RIG-I-Like Receptor Signaling. Journal of Virology 88, 5152-5164.
    74. Xu, H., He, X., Zheng, H., Huang, L.J., Hou, F., Yu, Z., de la Cruz, M.J., Borkowski, B., Zhang, X., Chen, Z.J., et al. (2014). Structural basis for the prion-like MAVS filaments in antiviral innate immunity. eLife 3, e01489.
    75. Xu, L.-G., Wang, Y.-Y., Han, K.-J., Li, L.-Y., Zhai, Z., and Shu, H.-B. VISA Is an VISA is an adapter protein required for virus-triggered IFN- signaling. Molecular Cell 19, 727-740.
    76. Xu, L.-G., Wang, Y.-Y., Han, K.-J., Li, L.-Y., Zhai, Z., and Shu, H.-B. (2005). VISA Is an Adapter Protein Required for Virus-Triggered IFN-β Signaling. Molecular Cell 19, 727-740.
    77. Yang, Y.-p., Hu, L.-f., Zheng, H.-f., Mao, C.-j., Hu, W.-d., Xiong, K.-p., Wang, F., and Liu, C.-f. (2013). Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacologica Sinica 34, 625-635.
    78. Yang, Z.J., Chee, C.E., Huang, S., and Sinicrope, F.A. (2011). The Role of Autophagy in Cancer: Therapeutic Implications. American Association for Cancer Research 10, 1533-1541.
    79. Yasukawa, K., Oshiumi, H., Takeda, M., Ishihara, N., Yanagi, Y., Seya, T., Kawabata, S.-i., and Koshiba, T. (2009). Mitofusin 2 Inhibits Mitochondrial Antiviral Signaling. Science Signaling 2, ra47-ra47.
    80. You, F., Sun, H., Zhou, X., Sun, W., Liang, S., Zhai, Z., and Jiang, Z. (2009). PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nature Immunology 10, 1300-1308.
    81. Yu, C.-Y., Chang, T.-H., Liang, J.-J., Chiang, R.-L., Lee, Y.-L., Liao, C.-L., and Lin, Y.-L. (2012). Dengue Virus Targets the Adaptor Protein MITA to Subvert Host Innate Immunity. PLOS Pathogens 8, e1002780.
    82. Yu, C.-Y., Chiang, R.-L., Chang, T.-H., Liao, C.-L., and Lin, Y.-L. (2010). The Interferon Stimulator Mitochondrial Antiviral Signaling Protein Facilitates Cell Death by Disrupting the Mitochondrial Membrane Potential and by Activating Caspases. Journal of Virology 84, 2421-2431.
    83. Yu, C.-Y., Liang, J.-J., Li, J.-K., Lee, Y.-L., Chang, B.-L., Su, C.-I., Huang, W.-J., Lai, M.M.C., and Lin, Y.-L. (2015). Dengue Virus Impairs Mitochondrial Fusion by Cleaving Mitofusins. PLOS Pathogens 11, e1005350.
    84. Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z.J. (2010). Reconstitution of the RIG-I Pathway Reveals a Pivotal Role of Unanchored Polyubiquitin Chains in Innate Immunity. Cell 141, 315-330.
    85. Zhong, B., Yang, Y., Li, S., Wang, Y.-Y., Li, Y., Diao, F., Lei, C., He, X., Zhang, L., Tien, P., et al. (2008). The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity 29, 538-550.
    86. Zhong, B., Zhang, Y., Tan, B., Liu, T.-T., Wang, Y.-Y., and Shu, H.-B. (2010). The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. Journal of Immunology 184, 6249-6255.

    無法下載圖示 校內:2021-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE