| 研究生: |
黃泓銘 Huang, Hung-Ming |
|---|---|
| 論文名稱: |
表面改質銅管之冷凝熱傳實驗探討 Experimental Studies of Condensation Heat Transfer on Surface Modified Copper Tubes |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 超疏水表面 、梯度表面 、網版印刷技術 、冷凝熱傳 |
| 外文關鍵詞: | Superhydrophobic, gradient surface, Screen printing technique, Condensation heat transfer |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用表面改質方法定義不同濕潤表面圖形設計於銅管外壁,主要目的為增大銅管冷凝熱傳效率與冷凝水收集速率,以提升冷凝器內部銅管整體冷凝熱傳性能。由於冷凝器內部銅管外壁為一彎曲表面,為此本研究自製曲面網版印刷平台,並應用網版印刷技術設計及製作不同濕潤表面圖形於銅管彎曲表面,主要目的為提升製作便利性與降低製作成本。本研究製作之銅管表面包括超親水銅管、超疏水銅管及三種梯度銅管表面。三種梯度銅管表面設計分為單楔形θ=8°、14°與雙楔形θ= 8° 並進行不同濕潤定銅管表面冷凝熱傳實驗及冷凝水收集速率實驗,並與未改質純銅管表面進行比較,研究結果發現在固定實驗條件之下,雙楔形8°之梯度銅管表面冷凝熱傳效率與冷凝水收集速率最佳。單楔形8°及單楔形14°冷凝熱傳係數高於未改質純銅管表面,但略差於超疏水銅管,本實驗結果顯示在表面過冷溫度ΔT < 12 °C時,雙楔形8°之梯度銅管表面冷凝熱傳係數高於純銅管,冷凝熱傳效率最高可提升28%,主要原因為楔形與楔形陣列之間最大液滴D max =1.479mm時就能被驅動,相較於其他性質銅管表面,液滴在雙楔形θ=8°表面上有較快驅動速度,可加速液滴從表面上滑落。
Condensation is a phase change phenomenon often found in nature, as well as used in the applications including thermal management, desalination, and power generation. For the past decades, researchers are able to create surfaces that allow droplets to be easily condensed and removed for enhanced heat transfer performance. Recent achievements in micro/nano fabrication techniques have enabled control of surface wettability. Condensation surface with proper design of wettability patterns can have higher droplet mobility which can promote droplet coalescence. Here, we provide a new surface modification method based on screen printing techniques to define superhydrophobic and superhydrophilic areas on copper tube curve surfaces for enhanced condensation heat transfer. In this study, screen printing platform is utilized to fabricate different wettability pattern surfaces on curve surface of copper tubes. The pattern designs including single wedge with angle 8° or 14°, and double wedges with angle 8° are tested in condensation heat transfer experiments and compare with superhydrophobic and superhydrophilic copper tubes, as well as unmodified copper tube. Experimental results show that condensation heat transfer efficiency and condensation water collection of the copper tubes with double wedge gradient surface of 8° are the best among all designs. Compared with unmodified copper tube, condensation heat transfer efficiency of double wedge gradient surface of 8° can improve 28 %. Experiments also show condensation droplets moving at a higher speed and faster water collection for the copper tube with double wedge gradient surface of 8°.
[1]Sheu, J. S., Maa, J. R., and Katz, J. L., Adsorption and nucleation on smooth surfaces, Journal of Statistical Physics, Vol. 52, pp. 1143-1455, 1988.
[2]Vemuri, S., Kim, K. J., Wood, B. D., Govindaraju, S., Bell, T. W., Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan, Applied Thermal Engineering, Vol. 26, pp. 421-429, 2006.
[3]Vemuri, S., Kim, K. J, and Bell, T. W., The longevity of self assembled mono-layer coatings for enhanced steam condensation and their applications in geothermal power plants, GRC Transactions, Vol. 30, pp.531-536, 2006.
[4]Yang, Q., Gu, A., Dropwise Condensation on SAM and electroless composite coating surface, Journal of Chemical Engineering of Japan, Vol. 39 (8), pp. 826-830, 2006.
[5]Huang, D. J., Leu, T. S., Condensation heat transfer enhancement by surface modification on a monolithic copper heat sink, Applied Thermal Engineering, Vol. 75, pp. 908-917, 2015.
[6]Greiner, C., Campo, A. D., and Arzt, E., Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload, Langmuir, Vol. 4 (23), pp. 3495-3502, 2007.
[7]Lee, J., He, B., Patankar, N. A., A roughness-based wettability switching membrane device for hydrophobic surfaces, Journal of Micromechanics and Microengineering, Vol. 15 (3), pp. 591-600, 2005.
[8]Daniel, S., Chaudhury, M. K., Chen, J. C., Fast drop movements resulting, Science, Vol. 291, 2001.
[9]Tsai, X. Y., Reuse of the gold substrate - Studies of surface oxidation for self assembled monolayers removal from the gold substrate, National Cheng Kung University, Taiwan, pp. 1-110,2002.
[10]Ichimura, K., Oh, S. K., Nakagawa, M., Light-Driven motion of liquids on a photoresponsive surface, Science, Vol. 288, 2000.
[11]Longtina, J. P., Hijikatab, K., Ogawab, K., Laser-induced surface-tension-driven flows in liquids, International Journal of Heat and Mass Transfer, Vol. 42, pp. 85-93, 1999.
[12]Khoo, H. S., Tseng, F. G., Spontaneous high-speed transport of subnanoliter water droplet on gradient nanotextured surfaces, Applied Physics Letters, Vol. 95 (6), pp. 063108, 2009
[13]Leu, T. S., Lin, H. W., Wu, T. H., Applications of surface modification techniques in enhancement of phase change heat transfer, Modern Physics Letters B, Vol. 24 (13), pp. 1381-1384, 2010.
[14]Huang, D. J., Leu, T. S., Fabrication of high wettability gradient on copper substrate, Applied Surface Science, Vol. 280, pp. 25-32, 2013.
[15]Choi, W. M., Park, O. O., The fabrication of submicron patterns on curved substrates using a polydimethylsiloxane film mould, Nanotechnology, Vol. 15 (12), pp. 1767-1770, 2004.
[16]Huang, T. C., Wu, J. T., Yang, S. Y., Huang, P. H., Chang, S. H., Direct fabrication of microstructures on metal roller using stepped rotating lithography and electroless nickel plating, Microelectronic Engineering, Vol. 86 (4-6), pp. 615-618, 2009.
[17]Hu, H.W., Tang, G.H., Niu, D., Experimental investigation of condensation heat transfer on hybrid wettability finned tube with large amount of noncondensable gas, International Journal of Heat and Mass Transfer, Vol. 85, pp. 513-523, 2015.
[18]Zhang, L., Yang, S., Xu H., Experimental study on condensation heat transfer characteristics of steam on horizontal twisted elliptical tubes, Applied Energy, Vol. 97, pp. 881-887, 2012.
[19]Peng, B., Ma, X., Lan, Z., Xu W., Rongfu Wen, Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect, International Journal of Heat and Mass Transfer, Vol. 77, pp. 785-794, 2014.
[20]Wenzel, R. N., Resistance of solid surfaces to wetting by water, Industrial and Engineering Chemistry, Vol. 28, pp. 988-994, 1936.
[21]Cassie, A. B. D., and Baxter, S., Wettability of porous surfaces, Transactions of the Faraday Society, Vol. 40, pp. 546-551, 1944.
[22]Miljkovic, N., Wang, E. N., Condensation heat transfer on superhydrophobic surfaces, MRS Bulletin, Vol. 38 (05), pp. 397-406, 2013.
[23]Courtney, W. G., Recent advances in condensation and evaporation, ARS Journal, Vol. 31, No. 6, pp. 751-756, 1961.
[24]Ma, X., Wang, S., Lan, Z., Peng, B., Ma, H. B., Cheng, P., Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable Gas, Journal of Heat Transfer, Vol. 134 (2), pp. 021501, 2012.
[25]3M NovecTM EGC-1720 Electronic Coating, 2003, http//www.phi.com.tw/novec.htm
[26]Huang, D. J., Leu, T. S., Fabrication of high wettability gradient on copper by screen printing techniques, Journal of Micromechanics and Microengineering, Vol.25, 2015.