| 研究生: |
張翊菁 Chang, Yi-Ching |
|---|---|
| 論文名稱: |
以芬頓反應驅動高分子囊泡進行超音波顯影與治療 A Fenton Reaction Activable Polymersome in Ultrasound-mediated Imaging and Therapy |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 高分子囊泡 、超音波 、活性氧化物質 (ROS) |
| 外文關鍵詞: | Polymersomes, Ultrasound, Reactive oxygen species (ROS) |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超音波是一種非侵入性的診斷與治療工具,具有方便使用、低成本、與即時性觀測等優點,近年來許多科學家積極發展多功能超音波顯影劑,提升超音波於生物醫學的應用價值。本研究提出一種同時具有超音波顯影與治療功能的材料,此材料是以雙重乳化的方式合成,外殼為聚乳酸-羥基乙酸共聚物 (poly(lactic-co-glycolic acid), PLGA) 鑲嵌四氧化三鐵奈米粒子,中心包覆雙氧水 (H2O2),作為氣體的來源,增強超音波影像的對比。材料在超音波環境下會破裂,釋放包覆於中心的雙氧水,雙氧水與鑲嵌於聚乳酸-羥基乙酸共聚物殼層中的四氧化三鐵奈米粒子接觸,發生芬頓反應 (Fenton reaction) 產生活性氧化物質 (Reactive oxygen species, ROS) ,利用活性氧化物質對細胞的毒殺效果達到癌症治療的目的。因為鑲嵌在聚乳酸-羥基乙酸共聚物殼層中的四氧化三鐵奈米粒子具有磁響應之特性與磁振造影的功能,因此可藉由磁導引的方式將材料導引至腫瘤部位產生磁振影像,再給予超音波刺激誘導材料破裂進行活性氧化物質介導的癌症治療,由實驗結果證實本材料於生物影像之觀測與惡性腫瘤的治療都有很好的應用價值。
We demonstrate a successful synthesis of a theranostic polymersomes and provide a series of imaging and therapy platform in this article. We synthesis the theranostic polymersomes by double emulsion (water/oil/water) method. The core area of the polymersomes is hydrophilic, and the space between the core and outer shell is hydrophobic. The hydrophobic ligand iron oxide nanoparticles can be embedded in the hydrophobic space. Due to the component of Fe3O4 nanoparticles which provides ferromagnetic property, it can be applied as T2-negative contrast agents of magnetic resonance imaging (MRI). We can use magnet targeting the tumor site to guide the polymersomes to tumor. Combining with ultrasound irradiate, this material can get ultrasound imaging and induced ROS mediated therapy. The in vivo test provide a strong evidence for cancer treatment.
Chen, W.; Du, J. Ultrasound and pH Dually Responsive Polymer Vesicles for
Anticancer Drug Delivery. Sci. Rep. 2013, 3, 2162.
2. El-Sherif, D. M.; Wheatley, M. A. Development of a novel method for synthesis of a polymeric ultrasound contrast agent. J. Biomed. Mater. Res. A. 2003, 66A, 347-355.
3. Salgado, P.; Melin, V.; Contreras, D.; Moreno, Y.; Mansilla, H. D. Fenton Reaction Driven By Iron Ligands. J. Chil. Chem. Soc. 2013, 58, 2096-2101.
4. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380-387.
5. Liou, G. Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44.
6. Huang, C. C.; Chuang, K. Y.; Chou, C. P.; Wu, M. T.; Sheu, H. S.; Shieh, D. B.; Tsai, C. Y.; Su, C. H.; Lei, H. Y.; Yeh, C. S. Size-control synthesis of structure deficient truncated octahedral Fe3-δO4 nanoparticles high magnetization magnetites as effective hepatic contrast agents. J. Mater. Chem. 2011, 21, 7472-7479.
7. Ke, C. J.; Chiang, W. L.; Liao, Z. X.; Chen, H. L.; Lai, P. S.; Sun, J. S.; Sung, H. W. Real-time visualization of pH-responsive PLGA hollow particles containing a gas-generating agent targeted for acidic organelles for overcoming multi-drug resistance. Biomaterials 2013, 34, 1-10.
8. Kennedy, J. E. High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 2005, 5, 321-327.
9. Jablonski, E. G.; Dittrich, H. C.; Bartlett, J. M.; Podell, S. B. Ultrasound Contrast Agents: The Advantage of Albumin Microsphere Technology. In Review of Progress in Quantitative Nondestructive Evaluation: Volume 17A; Thompson, D. O., Chimenti, D. E., Eds.; Springer US: Boston, MA, 1998, 15-22.
10. Kennedy, J. E.; Wu, F.; ter Haar, G. R.; Gleeson, F. V.; Phillips, R. R.; Middleton, M. R.; Cranston, D. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics 2004, 42, 931-935.
11. Wu, F.; Wang, Z. B.; Chen, W. Z.; Bai, J. I. N.; Zhu, H. U. I.; Qiao, T. Y. Preliminary Experience Using High Intensity Focused Ultrasound for the Treatment of Patients With Advanced Stage Renal Malignancy. J. Urol. 2003, 170, 2237-2240.
12. Gianfelice, D.; Khiat, A.; Boulanger, Y.; Amara, M.; Belblidia, A. Feasibility of Magnetic Resonance Imaging–guided Focused Ultrasound Surgery as an Adjunct to Tamoxifen Therapy in High-risk Surgical Patients with Breast Carcinoma. J. Vasc. Interv. Radiol 2003, 14, 1275-1282.
13. Coleman, A. J.; Saunders, J. E. A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy. Ultrasonics 1993, 31, 75-89.
14. Kiessling, F.; Fokong, S.; Bzyl, J.; Lederle, W.; Palmowski, M.; Lammers, T. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv. Drug Deliv. Rev. 2014, 72, 15-27.
15. Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 2005, 4, 255-260.
16. Rune Aaslid; Thomas Marc Markwalder; Helge Nornes. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 1982, 57, 769-774.
17. Liu, H. L.; Fan, C. H.; Ting, C. Y.; Yeh, C. K. Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 2014, 4, 432-444.
18. Schneider, M. SonoVue, a new ultrasound contrast agent. Eur. Radiol. 1999, 9,
S347-S348.
19. Ai-Ho, L.; Hao-Li, L.; Chia-Hao, S.; Mu-Yi, H.; Hung-Wei, Y.; Yu-Ting, W.; Po-Hung, H.; Sheng-Min, H.; Shih-Yen, W.; Hsin-Ell, W.; Tzu-Chen, Y.; Pai-Chi, L. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood–brain barrier opening and concurrent MR and ultrasound imaging. Phys. Med. Biol. 2012, 57, 2787.
20. Huynh, E.; LeungBen, Y. C.; Helfield, B. L.; Shakiba, M.; Gandier, J.-A.; Jin, C. S.; Master, E. R.; Wilson, B. C.; Goertz, D. E.; Zheng, G. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat. Nanotechnol. 2015, 10, 325-332.
21. Yang, F.; Li, Y.; Chen, Z.; Zhang, Y.; Wu, J.; Gu, N. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 2009, 30, 3882-3890.
22. Gao, D.; Xu, M.; Cao, Z.; Gao, J.; Chen, Y.; Li, Y.; Yang, Z.; Xie, X.; Jiang, Q.; Wang, W.; Liu, J. Ultrasound-Triggered Phase-Transition Cationic Nanodroplets for Enhanced Gene Delivery. ACS Appl. Mater. Interfaces 2015, 7, 13524-13537.
23. Chen, K. J.; Chaung, E. Y.; Wey, S. P.; Lin, K. J.; Cheng, F.; Lin, C. C.; Liu, H. L.; Tseng, H. W.; Liu, C. P.; Wei, M. C.; Liu, C. M.; Sung, H. W. Hyperthermia-Mediated Local Drug Delivery by a Bubble-Generating Liposomal System for Tumor-Specific Chemotherapy. ACS Nano 2014, 8, 5105-5115.
24. Min, K. H.; Min, H. S.; Lee, H. J.; Park, D. J.; Yhee, J. Y.; Kim, K.; Kwon, I. C.; Jeong, S. Y.; Silvestre, O. F.; Chen, X.; Hwang, Y.-S.; Kim, E.C.; Lee, S. C. pH-Controlled Gas-Generating Mineralized Nanoparticles: A Theranostic Agent for Ultrasound Imaging and Therapy of Cancers. ACS Nano 2015, 9, 134-145.
25. An, L.; Hu, H.; Du, J.; Wei, J.; Wang, L.; Yang, H.; Wu, D.; Shi, H.; Li, F.; Yang, S. Paramagnetic hollow silica nanospheres for in vivo targeted ultrasound and magnetic resonance imaging. Biomaterials 2014, 35, 5381-5392.
26. Zhang, K.; Chen, H.; Guo, X.; Zhang, D.; Zheng, Y.; Zheng, H.; Shi, J.Double-
scattering/reflection in a single nanoparticle for intensified ultrasound imaging. Sci. Rep. 2015, 5.
27. Zhang, X.; Zheng, Y.; Wang, Z.; Huang, S.; Chen, Y.; Jiang, W.; Zhang, H.; Ding, M.; Li, Q.; Xiao, X.; Luo, X.; Wang, Z.; Qi, H. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and Synergistic Targeted therapy of residual tumor during HIFU ablation. Biomaterials 2014, 35, 5148-5161.
28. Wang, C. H.; Huang, Y. F.; Yeh, C. K. Aptamer-Conjugated Nanobubbles for Targeted Ultrasound Molecular Imaging. Langmuir 2011, 27, 6971-6976.
29. Warram, J. M.; Sorace, A. G.; Saini, R.; Umphrey, H. R.; Zinn, K. R.; Hoyt, K. A Triple-Targeted Ultrasound Contrast Agent Provides Improved Localization to Tumor Vasculature. J.Ultrasound Med. 2011, 30, 921-931.
30. Huang, H. Y.; Liu, H. L.; Hsu, P. H.; Chiang, C. S.; Tsai, C. H.; Chi, H. S.; Chen, S. Y.; Chen, Y. Y. A multitheragnostic nanobubble system to induce blood-brain barrier disruption with magnetically guided focused ultrasound. Adv. Mater. 2015, 27, 655-661.
31. Fan, C. H.; Ting, C. Y.; Lin, H. J.; Wang, C. H.; Liu, H. L.; Yen, T. C.; Yeh, C. K. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials 2013, 34, 3706-3715.
32. Lentacker, I.; Geers, B.; Demeester, J.; De Smedt, S. C.; Sanders, N. N. Design and Evaluation of Doxorubicin-containing Microbubbles for Ultrasound-triggered Doxorubicin Delivery: Cytotoxicity and Mechanisms Involved. Mol. Ther. 2009, 18, 101-108.
33. Lee, N.; Hyeon, T.: Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 2012, 41, 2575-2589.
34. Mi, P.; Kokuryo, D.; Cabral, H.; Wu, H.; Terada, Y.; Saga, T.; Aoki, I.; Nishiyama, N.; Kataoka, K. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 2016, advance online publication.
35. Hu, F.; Wei, L.; Zhou, Z.; Ran, Y.; Li, Z.; Gao, M. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv. Mater. 2006, 18, 2553-2556.
36. Katz, J. S.; Zhong, S.; Ricart, B. G.; Pochan, D. J.; Hammer, D. A.; Burdick, J. A. Modular Synthesis of Biodegradable Diblock Copolymers for Designing Functional Polymersomes. J. Am. Chem. Soc. 2010, 132, 3654-3655.
37. Song, S.; Guo, H.; Jiang, Z.; Jin, Y.; Zhang, Z.; Sun, K.; Dou, H. Self-Assembled Fe3O4/Polymer Hybrid Microbubble with MRI/Ultrasound Dual-Imaging Enhancement. Langmuir 2014, 30, 10557-10561.
38. Osada, K.; Cabral, H.; Mochida, Y.; Lee, S.; Nagata, K.; Matsuura, T.; Yamamoto, M.; Anraku, Y.; Kishimura, A.; Nishiyama, N.; Kataoka, K. Bioactive Polymeric Metallosomes Self-Assembled through Block Copolymer-Metal Complexation. J. Am. Chem. Soc. 2012, 134, 13172-13175.
39. Hickey, R. J.; Luo, Q.; Park, S. J. Polymersomes and Multicompartment Polymersomes Formed by the Interfacial Self-Assembly of Gold Nanoparticles and Amphiphilic Polymers. ACS Macro Lett. 2013, 2, 805-808.
40. Hickey, R. J.; Haynes, A. S.; Kikkawa, J. M.; Park, S. J. Controlling the Self-Assembly Structure of Magnetic Nanoparticles and Amphiphilic Block-Copolymers: From Micelles to Vesicles. J. Am. Chem. Soc. 2011, 133, 1517-1525.
41. Du, Y.; Chen, W.; Zheng, M.; Meng, F.; Zhong, Z. pH-sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials 2012, 33, 7291-7299.
42. Zheng, C.; Qiu, L.; Zhu, K. Novel polymersomes based on amphiphilic graft polyphosphazenes and their encapsulation of water-soluble anti-cancer drug. Polymer 2009, 50, 1173-1177.
43. Pandey, R.; Khuller, G. K. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J. Antimicrob. Chemother. 2006, 57, 1146-1152.
44. Zhang, H.; Gao, S. Temozolomide/PLGA microparticles and antitumor activity against Glioma C6 cancer cells in vitro. Int. J. Pharm. 2007, 329, 122-128.
45. Singhal, A.; Morris, V. B.; Labhasetwar, V.; Ghorpade, A. Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death Dis. 2013, 4, e903.
46. Díaz-López, R.; Tsapis, N.; Santin, M.; Bridal, S. L.; Nicolas, V.; Jaillard, D.; Libong, D.; Chaminade, P.; Marsaud, V.; Vauthier, C.; Fattal, E. The performance of PEGylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent. Biomaterials 2010, 31, 1723-1731.
47. Lorenceau, E.; Utada, A. S.; Link, D. R.; Cristobal, G.; Joanicot, M.; Weitz, D. A. Generation of Polymerosomes from Double-Emulsions. Langmuir 2005, 21, 9183-9186.
48. Hauschild, S.; Lipprandt, U.; Rumplecker, A.; Borchert, U.; Rank, A.; Schubert, R.; Förster, S. Direct preparation and loading of lipid and polymer vesicles using inkjets. Small 2005, 1, 1177-1180.
49. Yang, P.; Ding, J.; Guo, J.; Shi, W.; Hu, J. J.; Wang, C. A strategy for fabrication of uniform double-shell hollow microspheres as effective acoustic echo imaging contrast agents through a new polymer-backbone-transition method. J. Biomed. Mater. Res. B. 2013, 1, 544-551.
50. Pisanic Ii, T. R.; Blackwell, J. D.; Shubayev, V. I.; Fiñones, R. R.; Jin, S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007, 28, 2572-2581.
51. Chen, Z.; Yin, J.-J.; Zhou, Y.-T.; Zhang, Y.; Song, L.; Song, M.; Hu, S.; Gu, N. Dual Enzyme-like Activities of Iron Oxide Nanoparticles and Their Implication for Diminishing Cytotoxicity. ACS Nano 2012, 6, 4001-4012.
52. Lemire, J. A.; Harrison, J. J.; Turner, R. J.: Antimicrobial activity of metals mechanisms, molecular targets and applications. Nat. Rev. Micro. 2013, 11, 371-384.
53. Chen, H.; Tian, J.; He, W.; Guo, Z.: H2O2-Activatable and O2-Evolving Nanoparticles for Highly Efficient and Selective Photodynamic Therapy against Hypoxic Tumor Cells. J. Am. Chem. Soc. 2015, 137, 1539-1547.
54. Cohn, C. A.; Pedigo, C. E.; Hylton, S. N.; Simon, S. R.; Schoonen, M. A. Evaluating the use of 3'-(p-Aminophenyl) fluorescein for determining the formation of highly reactive oxygen species in particle suspensions. Geochem Trans 2009, 10, 8.
55. Zhou, P.; Zhou, D.; Tao, L.; Zhu, Y.; Xu, W.; Xu, S.; Cui, S.; Xu, L.; Song, H. 320-fold luminescence enhancement of [Ru(dpp)3]Cl2 dispersed on PMMA opal photonic crystals and highly improved oxygen sensing performance. Light Sci. Appl. 2014, 3, e209.
56. Huang, C.; Zhang, H.; Sun, Z.; Zhao, Y.; Chen, S.; Tao, R.; Liu, Z. Porous Fe3O4 nanoparticles: Synthesis and application in catalyzing epoxidation of styrene. J. Colloid Interface Sci. 2011, 364, 298-303.
校內:2018-07-18公開