| 研究生: |
廖振偉 Liao, Chen-Wei |
|---|---|
| 論文名稱: |
多孔性磷酸鈣鹽之結構與機械性質研究 |
| 指導教授: |
朱建平
Ju, C. P. 陳瑾惠 Chern, J. H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 孔隙度 、磷酸鈣鹽 |
| 外文關鍵詞: | porous, calcium phosphate ceramics |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
組織工程是近年來最具開發潛力及競爭力的領域,且引起材料、醫學及生物界的高度興趣,對於人體各部位的缺損重建上帶來莫大的幫助。臨床研究中發現如由膠原為主要鷹架的皮膚再生,在復原期間,可降低傷口的收縮及減少疤痕的形成。
組織工程的主要目的是藉由合成或再生一個完全的器官或組織再將特定的細胞經體外培養後種入鷹架內,期望能慢慢地降解、再吸收和成長。本研究目的便是發展出一個以鈣磷系骨水泥為基質的多孔性鷹架,企圖於骨置換有比原來CPC更快的速度被骨母細胞佔據及吸收,另有Na+、CO32-參與反應取代HA之部分Ca2+和PO43-的位置,形成B-type sodium carbonate hydroxyapatite,是一種更接近人體骨骼組成的礦物質相,故可能有更好的生物相容性與組織反應等。氫氧基磷灰石(HA),其泥狀物pH值接近人體,植入人體後可與骨骼組織形成鍵結,具有高度的生物相容性(biocomptibility)、無細胞毒性(noncytotoxicity)、不刺激組織(inflammatory)、兼引導骨骼向內生長的特性(osteoconductivity)並且結合骨水泥容易塑型以及最後產物有低結晶程度(low-crystallized),利於往組織工程方向發展等優點。
經實驗顯示,想藉由熱處理增加其抗壓強度,必須盡量的減少添加物來降低對基材的影響,並且添加碳酸鈉於CPC中會有抑制HA反應,孔洞的大小、分佈及多寡等諸多因素影響著抗壓強度,呈現敏感性,熱處理至600℃會有相轉變發生。
none
第六章 總參考資料
1. 1. J. B. Park, “Biomaterials Science and Engineering”, Plenum Press, New York and London, (1985).
2. S. F. Hulbert, J.C. Bokros, L.L. Hench, J. Wilson, and G. Heimke, “Ceramics in clinical applications, past, present and future”, in “Ceramics in Clinical Applications”, edited by P. Vincenzini, pp. 3-27, Elsevier, Amsterdam-oxford-New York-Tokyo, (1987).
3. S.F.Hulbert, L.L.Hench, D. Forbers, and L.S. Bowman, “History of bioceramics”, Ceram. Internat., 8:131-140, 1982.
4. K. Soballe, “Hydroxyapatite ceramic coating for bone implant fixation”, ACTA Orthopaed. Scandin. Supplem., 64:1-58, 1993.
5. L.L. Hench, “Bioceramics: from concept to clinic”, J. Am. Ceram. Soc., 74:1487-1510, 1991.
6. A. Ravaglioli and A. Krajewski, “Bioceramics: Materials, Properties, Applications” , pp. 44-45, Chapman & Hall Press, London, (1992).
7. F.C.M. Driessens, “Formation and stability of calcium phosphates in relation to the phase composition of the mineral in calcified tissue”, pp. 1-32, in “Bioceramics of Calcium Phosphate”, edited by K. de Groot, CRC Press, Boca Raton, Fl, (1983).
8. G. de With, H.J.A. Vandijk, N. Hattu, and K. Prijs, “Preparation, microstructure and mechanical and mechanical properties of dense polycrystalline hydroxyapatite”, J. Mater. Sci., 16:1592-1598, 1981.
9. H.Y. Juang and M.H. Hon, “Effect of calcination on sintering of hydroxyapatite“, Biomaterials, 17:2059-2064, 1996.
10. M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobick, J.F. Kay, and R.H. Doremus, “Hydroxyapatie synthesis and characterization in dense polycrystalline form”, J. Mater. Sci., 11:2027-2035, 1976.
11. J.G.J. Peelin, B.V. Rejda, and K. de Groot, “Preparation and properties of sintered hydroxyapatite”, Ceramur. Internat., 4:71-74, 1978.
12. H.W. Denissen, H.J.A. Van Dijk, K. de Groot, P.J. klopper, J.P.W. Vermeiden, and A.P. Gehring, “Biological and mechanical evaluation of dense calcium hydroxyapatite made by continuous hot pressing”, pp.489-505, in “Mechanical Properties of Biomaterials”, G.W. Hastings and D.P. Williams, John Wiley & Sons Ltd., (1980).
13. K. Hirota, Y.T. asegawa, and H. Monma, “Densification of hydroxyapatite by hot isostatic pressing”, Yogyo-Kyokai-Shi, 90:680-682, 1982.
14. N. Wakamatsu, T. Goto, H. Kamemizu, M. Iijima, Y. Takezawa, H. Mizuguchi, S. Imura, K. Hayashi, S. Shibata, Y. Doi, and Yutaka, “Effect of Li3PO4 addition on sintering of hydroxyapatite”, J. Ceram. Soc. Jpn. Inter. Ed., 95:780-782, 1987.
15. Y. Fang, D.K. Agrawal, D.M. Roy, and R. Roy, “Fabrication of porous hydroxyaptite ceramics by microwave processing”, J. Mater. Res., 7:490-494, 1992.
16. N. Tamari, M. Mouri, and I. Kondo, “Mechanical properties and existing phases of composite ceramics obtained by sintering of a mixture of hydroxyapatite and zirconia”, Yogyo-Kyokai-Shi, 98:52-55, 1987.
17. J.M. Wu and T.S. Yeh, “Sintering of hydroxyapatite-zirconia composite materials”, J. Mater. Sci, 23:3771-3777, 1988.
18. K. Ioku, M. Yoshimura, and S. Somiya, “Microstructure and mechanical properties of hydroxyapatite ceramics with zirconia dispersion prepared by post-sintering.
19. M. Takagi, M. Mochida, N. Uchida, K. Saito, and K. Uematsu, “Filter cake forming and hot isostatic pressing for TZP-dispersed hydroxyapatite composite”, J. Mater. Sci.:Mater. in Med., 3:199-203, 1992.
20. A. Bertoluzza, R. Simoni, and A.Tinti, “Calcium phosphate materials containing alumina: Raman spectroscopical; hostological;. and ultrastructural study”, J. Biomed. Mater. Res., 125:23-38, 1991.
21. H. Ji and P.M. Marquis, “Preparation and characterization of Al2O3 reinforced hydroxyapatite”, Biomaterials, 13:744-748, 1992.
22. H. Ji and P.M. Marquis, “Sintering behavior of hydroxyapatite reinforced with 20wt% Al2O3”, J. Mater. Sci., 28:1941-1945, 1993.
23. E. Champion, S. Gautier, and D. Bernache-Assollant, “Characterization of hot pressed Al2O3-platelet reinforced hydroxyapatite composites”, J. Mater. Sci.:Mater. in Med., 7:125-130, 1996.
24. W. Suchanek, M. Yashima, M. Kakihana, and M. Yoshimura, “Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers”, Biomaterials, 17:1715-1723, 1996.
25. T. Kokubo, “Recent progress in glass-based materials for biomedical applications”, The Centennial Memorial Issue of The Ceramic Society of Japan, 99:965-973, 1991.
26. K. de Groot, C.P.A.T. Klein, J.G.C. Wolke, and J.M.A. de Blieck-Hogervorst, "Chemistry of Calcium phosphate bioceramics", pp.3-16, in “Handbook of Bioactive Ceramics Vol.II”, edited by T. Yamamuro, L.L. Hench and J. Wilson, CRC Press, Boca Raton, FL, (1990).
27. J.C. Knowles and W. Bonfield, "Development of a glass reinforced hydroxyapatite with enhanced mechanical properties and its relationship to phase changes", J. Biomed. Mat. Res., 27:1591-1598, 1993.
28. I.M.O. Kangasniemi, K. de Groot, J.G.M. Becht, and A. Yli-Urpo, "Preparation of dense hydroxyapatite or rhenanite containing bioactive glass composites", J. Biomed. Mat. Res., 26:663-674, 1992.
29. J.D. Santos, J.C. Knowles, F.J. Monteiro, and G.W. Hastings, "Development of a glass reinforced hydroxyapatite with enhanced mechanical properties : physical characterization and in vitro studies", pp. 35-41, in “Bioceramics vol.5 “, edited by T. Yamamuro, T. Kokubo, and T. Nakamura, Kyoto, Japan, Kobunshi Kankokai, (1992).
30. J.D. Santos, J.C. Knowles, R.L. Reis, F.J. Monteiro, and G.W. Hastings, "Microstructural characterization of glass-reinforced hydroxyapatite composites", Biomaterials, 15:5-10, 1994.
31. J.C. Knowles, "Development of hydroxyapatite with enhanced mechanical properties: Effect of high glass additions on mechanical properties and phase stability of sintered hydroxyapatite", Bri. Ceram. Trans., 3:100-103, 1994.
32. J. D. Santos, R.L. Reis, F.J. Monteiro, J.C. knowles, and G.W. Hastings, “Liquid phase sintering of hydroxylapatite by phosphate and silicate glass additions : structure and properties of the composites”, J. Mater. Sci.: Mater. in Med., 6:348-352, 1995.
33. C. Rey, M. Freche, M. Heughebaert, and M. Vignoles, "Apatite chemistry in biomaterial preparation, shaping and biological behaviour”, pp.57-64, In “Bioceramics”, edited by W. Bonfield, G.W. Hastins, K.E. Tanner : Butterworth-Heinemann, Lindon, (1991).
34. 王志光, 朱建平, 陳瑾惠, "生醫玻璃及石英強化氫氧基磷灰石研究", pp. 380-381, 中國材料科學學會83年年會, 83年4月, 國立中山大學, 高雄, 台灣, 中華民國, (1994).
35. J.H. Chern Lin, C.K. Wang, and C.P. Ju, "Structure and properties of bioactive glass-doped hydroxyapatite.", Third International Congress on Dental Materials, Sheraton Waikiki, Hawaii, USA, November 4-8, (1997).
36. C.K. Wang, C.P. Ju, and J.H. Chern Lin, “Effect of doped bioactive glass on structure and properties of sintered hydroxyapatite”, Mater. Chem. Phy., 53:138-149, 1998.
37. K.K. Chawla, "Composite Materials Science and Engineering ", pp.134-149, (~1986).
38. I.W. Donald and P. W. Mcmillan, "Review ceramic-matrix composites", J. Mat. Sci. , 11:949-972, 1976.
39. W.R. Cannon, "Transformation toughened ceramic for structural applications ", pp.195-228, in “Treaties of Materials Sci. and Tech., vol.29”, Edited by J.B. Wachtman, Academic Press, San Diego, CA, (1989).
40. Z. Strnad, "Role of the glass phase in bioactive glass-ceramics", Biomaterials, 13:317-321, 1992.
41. L. L. Hench, R.J. Splinter, W.C. Allen, and T.K. Greenlee, "Bonding mechanism at the interface of ceramic prosthetic materials", J. Biomd. Mater. Res. Symp., 2:117-141, 1971.
42. K. de Groot, C.P.A.T. Klein, J.G.C. Wolke, and J.M.A. de Blieck-Hogervorst, "Chemistry of Calcium phosphate bioceramics", pp.3-16, in “Handbook of Bioactive Ceramics Vol.II”, edited by T. Yamamuro, L.L. Hench and J. Wilson, CRC Press, Boca Raton, FL, (1990).
43. J.H. Welch and W. Gutt, “High temperature studies of the system calcium oxide-phosphorus pentoxide”, J. Chem. Soc., 4442-4444, 1961.
44. J. Zhou, X. Zhang, J. Chen, S. Zeng, and K. de Groot, "High temperature characteristics of synthetic hydroxyapatite", J. Mat. Sci.:Mat. in Med., 4:83-85, 1993.
45. T. Goto, N. Wakamatsu, H. Kamemizu, M. Lljima, Y. Doi, and Y. Moriwaki, "Sintering mechanism of hydroxyapatite by addition of lithium phosphate", J. Mater. Sci.: Mater. Med., 2:149-152, 1991.
46. J.C. Knowles and W. Bonfield, "Development of a glass reinforced hydroxyapatite with enhanced mechanical properties and its relationship to phase changes", J. Biomed. Mat. Res., 27:1591-1598, 1993.
47. E.A.P.De Maeyer, R.M.H.Verbeeck, D.E.Naessens,Inorg.Chem.32(1993)5709
48. E.A.P.De Maeyer, R.M.H.Verbeeck, Bull.Soc.Chim.Belg.102(1993)601
49. E.A.P.De Maeyer, R.M.H.Verbeeck, I.Y.Pieters,J. Cryst.Growth 169(1996)539.
50. Hafed El Feki,Jean Michel Savariault,【Sodium and carbonate distribution in substituted calcium hydroxyapatite】2000 Editions scientifiques et medicales Elsevier SAS.
51. Hafed El Feki,J.M. Saveriault,【Structure refinement by the Rietveld
method of partially substituted hydroxyapatite:Ca9Na0.5(PO4)4.5(CO3)1.5(OH)2】1999 Editions scientifiques et medicales Elsevier SAS.