| 研究生: |
林紀綱 Lin, Chi-Kang |
|---|---|
| 論文名稱: |
SS400低碳鋼中含鎂介在物誘導針狀肥粒鐵成核機制之研究 Study of AF Formation Mechanisms Induced by Mg-Based Inclusions in Low-carbon Steel SS400 |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 含鎂介在物 、釘扎 、冷卻速率 、沃斯田鐵晶粒 、針狀肥粒鐵成核機制 |
| 外文關鍵詞: | magnesium-based inclusions, acicular ferrite, cooling rate, austenite grain size, nucleation mechanism |
| 相關次數: | 點閱:71 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用高溫共軛焦雷射掃描顯微鏡(HT-CLSM)進行鎂含量之SS400低碳鋼在高溫釘扎沃斯田鐵晶粒成長和介在物誘導針狀肥粒鐵成長之即時觀測。由即時觀測影像發現介在物能夠在高溫時抑制沃斯田鐵晶界遷移,阻礙沃斯田鐵晶粒成長。13ppm 鎂含量之SS400低碳鋼中MgO-MnS是含鎂介在物最能抑制沃斯田鐵晶粒成長的介在物,其MgO-MnS介在物在沃斯田鐵晶界的佔所有介在物總量之比為43%。鎂含量增加至13 ppm會降低60%的沃斯田鐵晶粒尺寸。接著控制不同製程參數(冷卻速率和沃斯田鐵晶粒尺寸)探討針狀肥粒鐵成核之因素,結果顯示熱應變能和針狀肥粒鐵成核比率成正比關係,冷卻速率10 ℃/s有最佳的針狀肥粒鐵成核比率;適當的沃斯田鐵晶粒能誘導最多的針狀肥粒鐵,沃斯田鐵尺寸152 μm有最佳的針狀肥粒鐵成核比率,此外,還探討了碳擴散最遠距離和沃斯田鐵晶粒尺寸之關係。本研究針對針狀肥粒鐵成核機制進行深入探討,冷卻速率造成介在物周圍產生之熱應變能和肥粒鐵成核之熱應變能相差甚大,故熱應變能並非針狀肥粒鐵成核主因。MgO和MgAl2O4與肥粒鐵具有較低的晶格不匹配度,有助於誘導針狀肥粒鐵成核;而MnS與肥粒鐵具有較高的晶格不匹配度,肥粒鐵不易在其界面成核。複合型介在物(MgO-MnS和MgAl2O4-MnS)會形成錳貧乏區,有助於誘導針狀肥粒鐵成核。
An investigation has been carried out into the effects of the microalloying elements Mg adding into low carbon steel. Controlling process parameter to induce AF nucleation, such as cooling rate and austenite grain size. The probability of AF nucleation at inclusions increased with increasing cooling rate due to the larger thermal strain energy of ferrite formation during the cooling processes. The appropriate austenite grain size exhibits the highest capacity to induce AF formation. Furthermore, the effects of the maximum distance of carbon diffusion and austenite grain size on the microstructure are discussed. Moreover, AF nucleates at the interface of MgO and MgO-Al2O3 because of the low lattice misfit with AF. Complex inclusions, such as MgO-MnS and MgO-Al2O3-MnS, present a better ability of inducing AF formation than that of MnS due to the Mn-depleted zone.
[1] A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida and H. Yasui, “Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles,” Shinnittetsu Giho, vol. 90 (2004) p.p 2-5
[2] J. L. Lee, “Evaluation of the nucleation potentia of intragranular acicular ferrite in steel weldments,” Acta Metall. Mater. vol. 42 (1994) p.p. 3291-3298.
[3] T. K. Lee, H. J. Kim. B. Y. Kang, S. K. Hwang, Effect of Inclusion Size on the Nucleation of Acicular Ferrite in Welds. ISIJ International. vol. 40 (2000) [.p. 1260-1268.
[4] H. Mabuchi, R. Uemori and M. Fujioka, “The role of Mn Depletion in Intra-Granular Ferrite Transformation in the Heat Affected Zone if Welded Joints with Large Heat Input in Structural Steels,” ISIJ International, vol. 36 (1996) p.p. 1406-1412.
[5] J. L. Lee and Y. T. Pan, “The Formation of Intragranular Acicular Ferrite in Simulated Heat-affected Zone,” ISIJ International, vol 35 (1995) p.p. 1027-1033.
[6] J. Mizoguchi, "Roles of Oxides in Steels Performance – Metallurgy of Oxides in Steels," Sixth International Iron and Steel Congress, vol. 1 (1990) p. 591.
[7] S. S. Babu, "The Mechanism of Acicular Ferrite in Weld Deposits," Current Opinion in Solid State and Materials Science, vol. 8(2004) pp. 267-278.
[8] K. Weman, Welding Processes Handbook (Second edition) 2012, Woodhead Publishing.
[9] Z. Chen, M. Loretto and R. Cochrane, "Nature of Large Precipitates in Titanium-Containing HSLA Steels", Materials Science and Technology, vol. 3 (1987) pp. 836-844.
[10] M. Prikryl, A. Kroupa, G. Weatherly and S. Subramanian, "Precipitation Behavior in a Medium Carbon, Ti-V-N Microalloyed Steel", Metallurgical and Materials Transactions A, vol. 27 (1996) pp. 1149-1165.
[11] W. Yan, Y. Shan and K. Yang, "Effect of TiN Inclusions on the Impact Toughness of Low-Carbon Microalloyed Steels", Metallurgical and Materials Transactions A, vol. 37 (2006) pp. 2147-2158.
[12] Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, and K. Okamoto, "Improvement in HAZ Toughness of Steel by TiN-MnS addition," ISIJ International, vol. 34 (1994) pp. 829-835.
[13] K. Yamamoto, T. Hasegawa and J. I. Takamura, "Effect of Boron on Intra-Granular Ferrite Formation in Ti-Oxide Bearing Steels", ISIJ International, vol. 36 (1996) pp. 80-86.
[14] J. L. Lee and Y. T. Pan, "Effect of Sulfur Content on the Microstructure and Toughness of Simulated Heat-Affected Zone in Ti-Killed Steels", Metallurgical Transactions A, vol. 24 (1993) pp. 1399-1408.
[15] C. Zener, C.S. Smith, “ Grain, Phases, and Interfaces: Interpretation of Microstructures,” Transaction metallurgy Society of AIME. 175 (1948) 15-51.
[16] K. Alogab, D. Matlock, J. Speer and H. Kleebe, "The Influence of Niobium Microalloying on Austenite Grain Coarsening Behavior of Ti-modified SAE 8620 steel," ISIJ International, vol. 47 (2007) pp. 307-316.
[17] M. Chapa, S. F. Medina, V. López and B. Fernández, "Influence of Al and Nb on Optimum Ti/N Ratio in Controlling Austenite Grain Growth at Reheating Temperatures," ISIJ International, vol. 42 (2002) pp. 1288-1296.
[18] C. Feng, C. Yang, S. Hang, Y. Zhang and X. Zhou, "Effect of Magnesium on Inclusion Formation in Ti-killed Steels and Microstructural Evolution in Welding Induced Coarse-grained Heat Affected Zone," Journal of Iron and Steel Research, International, vol. 16 (2009) pp. 69-74.
[19] X.B. Li, Y. Min, Y. U. Zhe, C. J. Liu and M. F. Jiang, “Effect of Mg Addition on Nucleation of Intra-granular Acicular Ferrite in Al-killed Low Carbon Steel,” Journal of Iron and Steel Research, vol. 23 (2016) p.p. 415-421.
[20] H. Kong, Y. H. Zhou, H. Lin, Y. J. Xia, J. Li, Q. Yue and Z. Y. Cai, “The Mechanism of Intragranular Acicular Ferrite Nucleation Induced by Mg-Al-O Inclusions,” Advances in Materials Science and Engineering, vol. 2015 (2015) p.p. 1-6.
[21] F. Chai, C.F. Yang, S. U. Hang, Y. Q. Zhang and X. U. Zhou, “Effect of Magnesium on Inclusion Formation in Ti-Killed Steels and Microstructural Evolution in Welding Induced Coarse-Grained Heat Affected Zone,” Journal of Iron and Steel Research, vol. 16 (2009) p.p. 69-74.
[21] K. Zhu and Z. G. Yang, “Effect of Mg Addition on the Ferrite Grain Boundaries Misorientation in the HAZ of Low Carbon Steels,” Journal of Materials Science and Technology, vol. 27 (2011) p.p. 252-256.
[22] J. Yang, L. Y. Xu, K. Zhu, R. Z. Wang, L. J. Zhou and W. L. Wang, “Improvement of HAZ Toughness of Steel Plate for High Heat Input Welding by Inclusion Control with Mg Deoxidation,” Steel Research, vol. 86 (2015) p.p. 619-625.
[23] B. Wen and B. Song, “In Situ Observation of the Evolution of Intragranular Acicular Ferrite at Mg-containing Inclusions in 16Mn Steel,” Jouranl of Manufacturing Science and Production, vol. 13 (2013) p.p. 61-72.
[24] Y. Sahai and T. Emi, “Tundish Technology for Clean Steel Production,” Hackensack, NJ: World Scientific, 2008.
[25] D. Fairchild, D. Howden and W. Clark, "The Mechanism of Brittle Fracture in a Microalloyed Steel: Part I. Inclusion-induced Cleavage," Metallurgical and Materials Transactions A, vol. 31 (2000) p.p. 641-652.
[26] P. Manohar, D. Dunne, T. Chandra and C. Killmore, "Grain Growth Predictions in Microalloyed Steels," ISIJ International. vol. 36 (1996) pp. 194-200, 1996.
[27] J. Moon, S. Kim, H. Jeong, J. Lee and C. Lee, "Influence of Nb addition on the Particle Coarsening and Microstructure Evolution in a Ti-containing Steel Weld HAZ," Materials Science and Engineering: A, vol. 454 (2007) pp. 648-653.
[28] S. K. Michelic, D. Loder, T. Reip, A. A. Barani and C. Bernhard, “Characterization of TiN, TiC and Ti(C,N) in Titanium-alloyed Ferritic Chromium Steels focusing on the Significance of differnet Particle Morphologies” Materials Characterization. vol. 100 (2015) p.p. 61-67.
[29] S. P. Ringer, W. B. Li, K. E. Easterling, “On the interaction and Pinning of Grain Boundary by Cubic Shaped Precipitate Particles” Acta Metallurgica. vol. 37 (1989) p.p. 831-841.
[30] H. H Jin, J. H. Shim, Y. W. Cho, H. C. Lee, “Formation of Intragranular Acicular Ferrite Grains in a Ti-containing Low Carbon Steel” ISIJ International. vol. 43 (2003) p.p. 1111-1113.
[31] Q. Sha and Z. Sun, “Grain Growth behavior of Coarse-grained Austenite in a Nb-V-Ti Microalloyed Steel” Materials Science and Engineering: A. vol. 523 (2009) p.p. 77-84.
[32] Y. Gu, G. Y. Qiao, D. Y. Wu, B. Liao and F. R. Xiao, “Precipitation Kinectis of Nb Carbonitride in Austenite and Acicular Ferrite and its effect on hardness of high-Nb Steel”. Materials Chemistry and Physics. Vol. 183 (2016) p.p. 506-515.
[33] S. Mukae, K. Nishio, M. Katoh and T. Isayama, “Solution of TiN and Toughness in Synthetic Weld Heat Affected Zone of Ti and N bearing Mild Steels” Quarterly Journal of the japan Welding Society. Vol. 3 (1985) p.p. 567-574.
[34] R. Dekkers B. Blanpain, P. Wollants, F. Haers, C. Vercruyssen and B. Gommers, “Non-metallic Inclusions in Aluminium killed steels” Ironmaking & Steelmaking. Vol. 29 (2002) p.p. 437-444.
[35] R. Rastogi and A. W. Cramb, “Inclusion Formation and Agglomeration in Aluminum killed Steels” 84 th Steelmaking Conference Proceedings. vol. 84 (2001) p.p. 789-829.
[36] L. F. Zhang, B. Rietow, B. G. Thomas and K. Eakin, “Large Inclusions in Plain-carbon steel Ingots cast by bottom teeming” ISIJ International. vol. 46 (2006) p.p. 670-679.
[37] J. Yang, K. Zhu, R. Wang and J. Shen, “Improving the Toughness of Heat Affected Zone of Steel Plate by Use of Fine Inclusion Particles” Steel Research international. vol. 82 (2011) p.p. 552-556.
[38] S. Taniguchi and G. Shigesato, “Refinement Mechanism of Heat-Affected Zone Microstructures on TiO Steels,” Nippon steel & Sumitomo Metal trchnical report. 110 (2015) 105-109.
[39] S. Y. Lee, Y. J. Oh and K. W. Yi, “Effects of Titanium and Oxygen Content on Microstructure in Low Carbon Steels” Materials Transactions. vol. 43 (2002) p.p. 518-522.
[40] J.S. Byun, J. H. Shim, Y.W. Cho, D.N. Lee, Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn Steel, Acta Materialia. 2003 vol. 51 pp. 1593-1606
[41] X. Gao, S. Yang, J. Li, Y. Yang, K. Chattopadhyay and A. Mclean, “Effects of MgO Nanoparticle Additions on the Structure and Mechaniacl Properties of Continuously Cast Steel Billets” Metallurgical and Materials Transactions A. vol. 47 (2016) p.p. 461-470.
[42] K. Zhu, J. Yang, R. Z. Wang and Z. G. Yang, “Effect of Mg Addition on Inhibiting Austenite Grain Growth in Heat Affected Zones of Ti-Bearing Low Carbon Steels” Journal of Iron and Steel Research, International. vol 18 (2011) p.p. 60-64.
[43] X.B. Li, Y. Min, Y. U. Zhe, C. J. Liu and M. F. Jiang, “Effect of Mg Addition on Nucleation of Intra-granular Acicular Ferrite in Al-killed Low Carbon Steel” Journal of Iron Steel Research, International. vol. 23 (2016) p.p. 415-421.
[44] H. Kong, Y. H. Zhou, H. Lin, Y. J. Xia, J. Li, Q. Yue and Z. Y. Cai, “The Mechanism of Intragranular Acicular Ferrite Nucleation Induced by Mg-Al-O Inclusions” Advances in Materials Science and Engineering. Vol. 2015 (2015) p.p. 1-6.
[45] G. K. Sigworth and J. F. Elliott, “The Thermodynamics of Liquid Dilute Iron Alloys” Metal Science. Vol. 8 (1974) p.p. 298-310.
[46] L. Guo, H. Roelofs, M. L. Lembke and H. K. D. H. Bhadeshia, “Effect of Manganese Sulphide Particle Shape on the Pinning of Grain Boundary” Materials Sceience and Technology. vol. 33 (2017) p.p. 1013-1018.
[47] K. Oikawa, H. Ohtani, K. Ishida and T. Nishizawa, “The Control of the Morphology of MnS Inclusions in Steel during Solidification” ISIJ International. vol. 35 (1995) p.p. 402-408.
[48] R. Kiessling and N. Lange, “Non-metallic Inclusions in Steel” (Secend edition) E. London: Metals Society, 1978.
[49] E. Nes, N. Ryun and O. Hunderi, “On the Zener drag” Acta Metallurgica. vol. 33 (1985) p.p. 11-22.
[50] H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, (third edition) Butterworth-Heinemann, 2006.
[51] D. V. Edmonds and R. C. Cochrance, “Structure-property Relationships in Bainitic Steels” Metallurgy Transactions A. vol. 22 (1990) p.p. 1527-1540.
[52] R. Ricks, P. Howell and G. Barritte, "The Nature of Acicular Ferrite in HSLA Steel Weld Metals," Journal of Materials Science, vol. 17 (1982) pp. 732-740
[53] H. Bhadeshia, "Thermodynamic Analysis of Isothermal Transformation Diagrams," Metal Science, vol. 16 (1982) pp. 159-166.
[54] M. Strangwood and H. Bhadeshia, "The Mechanism of Acicular Ferrite Formation in Steel Weld Deposits", Advances in Welding Technology and Science, (1986) p.p. 209-213.
[55] H. Bhadeshia and J. Christian, "Bainite in Steels," Metallurgical Transactions A, vol. 21 (1990) pp. 767-797.
[56] O. Grong and D. K. Matlock, "Microstructural Development in Mild and Low-alloy Steel Weld Metals," International Metals Reviews, vol. 31 (1986) p.p. 27-48, 1986.
[57] R. Farrar and P. Harrison, “Acicular Ferrite in Carbon-manganese Weld Metals: an Overview” Journal of Materials Science. vol. 22 (1987) p.p. 3812-3820.
[58] G. Evans, “The Effect of Manganese on the Microstructure and Properties of all-wel-metal Deposits” Welding Journal. vol. 59 (1980) p.p. 67-76.
[59] J. Garland and P. Kirkwood, "Towards Improved Submerged-Arc Weld Metal. Part. 1," Metal Construction, vol. 7 (1975) p.p. 275-278.
[60] S. Lee, D. Kwon, Y. Lee and O. Kwon, "Transformation Strengthening by Thermomechanical Treatments in C-Mn-Ni-Nb Steels," Metallurgical and Materials Transactions A, vol. 26 (1995) p.p. 1093-1100.
[61] K. Junhua, Z. Lin, G. Bin, L. Pinghe, W. Aihua and X. Changsheng, "Influence of Mo content on Microstructure and Mechanical Properties of High Strength Pipeline Steel" Materials & Design, vol. 25 (2004) p.p. 723-728.
[62] W. Bose-Filho, A. Carvalho and M. Strangwood, "Effects of Alloying Elements on the Microstructure and Inclusion Formation in HSLA Multipass Welds," Materials Characterization, vol. 58 (2007) p.p. 29-39.
[63] T. Węgrzyn and J. Piwnik, "Low Alloy Steel Welding with Micro-jet Cooling," Archives of Metallurgy and Materials, vol. 57 (2012) pp. 539-543, 2012.
[64] H. K. D. H. Bhadeshia, "Thermodynamic Analysis of Isothermal Transformation Diagrams", Metal Science. vol. 16 (1982) pp. 159-166.
[65] I. Madariaga, I. Gutierrez, C. García de Andrés and C. Capdevila, "Acicular Ferrite Formation in a Medium Carbon Steel with a Two Stage Continuous Cooling," Scripta Materialia. Vol. 41 (1999) p.p. 229-235.
[66] J. H. Shim, Y. W. Cho, S. H. Chung, J. D. Shim and D. N. Lee, "Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel," Acta Materialia, vol. 47 (1999) p.p. 2751-2760.
[67] Y. Ohno, Y. Okamura, S. Matsuda, K. Yamamoto and T. Mukai, "Characteristics of HAZ Microstructure in Ti-B Treated Steel for Large Heat Input Welding," Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan. vol. 73 (1987) p.p. 1010-1017.
[68] F. Ishikawa, T. Takahashi and T. Ochi, "Intragranular Ferrite Nucleation in Medium-carbon Vanadium Steels," Metallurgical and Materials Transactions A, vol. 25 (1994) p.p. 929-936.
[69] A. B. Cota, R. Barbosa and D. B. Santos, "Simulation of the Controlled Rolling and Accelerated Cooling of a Bainitic Steel Using Torsion Testing," Journal of Materials Processing Technology, vol. 100 (2000) p.p. 156-162.
[70] I. Madariaga, I. Gutierrez, “Nucleation of Acicular Ferrite Enhanced by the Precipitation of CuS on MnS particles” Scripta Materialia. vol. 37 (1997) p.p. 1185-1192.
[71] D. S. Sarma, A. Karasev, and P. Jönsson, "On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels," ISIJ International, vol. 49 (2009) p.p. 1063-1074.
[72] J. L. Lee, “Evaluation of the Nucleation Potential of Intragranular Acicular Ferrite in Steel Weldments” Acta Materialia. vol. 42 (1994) p.p. 3291-3298.
[73] T. K. Lee, H. J. Kim, B. Y. Kang and S. K. Hwang, “Effect of Inclusion Size on the Nucleation of Acicualr Ferrite in Welds” ISIJ International. vol. 40 (2000) p.p. 1260-1268.
[74] X. Gao, S. Yang, J. Li, Y. Yang, K. Chattopadhyay and A. McLean, "Effects of MgO Nanoparticle Additions on the Structure and Mechanical Properties of Continuously Cast Steel Billets," Metallurgical and Materials Transactions A, vol. 47 (2016) p.p. 461-470.
[75] S. Zhang, N. Hattori, M. Enomoto, and T. Tarui, "Ferrite Nucleation at Ceramic/Austenite Interfaces," ISIJ International, vol. 36 (1996) p.p. 1301-1309.
[76] B. L. Bramfitt, "The Effect of Carbide and Nitride additions on the Heterogeneous Nucleation Behavior of Liquid Iron," Metallurgical Transactions, vol. 1 (1970) p.p. 1987-1995.
[77] I. Madariaga and I. Gutierrez, "Role of the Particle–matrix Interface on the Nucleation of Acicular Ferrite in a Medium Carbon Microalloyed Steel," Acta Materialia, vol. 47 (1999) p.p. 951-960.
[78] D. S. Sarma, A. Karasev, and P. Jönsson, "On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels," ISIJ International, vol. 49 (2009) p.p. 1063-1074.
[79] X. Wang, K. Wu, G. Huang, R. Wei, L. Cheng, “In situ bservation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels” International Journal of Minerals Metallurgy and Materials. vol. 21 (2014) p.p. 878-885.
[80] S. Du, Y. Li and Y. Zheng, “Kinetics of Austenite Grain Growth During Heating and Its Influence on Hot Deformation of LZ50 Steel” Journal of Materials Engineering Performance. vol. 25 (2016) p.p. 2661-2669.
[81] D. Weygand, Y. Bréchet and J. Lépinoux, “Zener Pinning and Grain Growth: a two-dimensional Vertex Computer Simulation” Acta Materialia vol. 47 (1999) p.p. 961-970.
[82] B. Kad and P. Hazzledine, “Monte Carlo Simulations of Grain Growth and Zener Pinning” Materials Science and Engineering A. vol. 238 (1997) p.p. 70-77.
[83] J. Gao, G. Thompson and B. Patterson, “Computer Simulation of Grain Growth with Second Phase Particle Pining” Acta Materialia. vol. 45 (1997) p.p. 3653-3658.
[84] M. Miodownik, J. Martin and A. Cerzo, “Mesoscale Simulations of Particle Pinning” Philosophical Magazine A. vol. 79 (1999) p.p. 203-222.
[85] N. Moelans, B. Blanpain and P. Wollants, “Pinning Effect of Second-phase Particles on Grain Growth in Polycrystalline Films Studied by 3-D Phase Filed Simulations” Acta Materialia. vol. 55 (2007) p.p. 2173-2182.
[86] J. Gregg and H. Bhadeshia, “Solid-state nucleation of acicular ferrite on minerals added to molten steel” Acta Materialia. vol. 45 (1997) p.p. 739-748.
[87]. J. Shim, Y. Cho, S. Chung, J. Shim and D. Lee, “Intragranular Ferrite Nucleation and Grain Refinement of Ti-Containing Low Carbon Steels” Korean of Journal Institute of Metals and Materials. vol. 36 (1998) p.p. 1993-2002.
[88] Z. Zhang and R. Farrar, “Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals” Materials Science and Technology. vol. 12 (1996) p.p. 237-260.
[89] H. Suito, H. OHTA and S. Morioka, “Refinement of Solidification Microstructure and Austenite Grain by Fine Inclusion Particles” ISIJ international vol. 46 (2006) p.p. 840-846.
[90] A. Kojima, A. Kiyose and R. Uemori, “Development of High HAZ Toughness Steel Plates for Box Columns with High Heat Input Welding” Nippon Steel Technical Report. Vol. 90 (2004) p.p. 39-44.
[91] J. Moon, J. Lee, C. Lee, “Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel” Materials Science and Engineering A. vol. 459 (2007) p.p. 40-46.
[92] J. W. Martin, Precipitation Hardening, Second edition Butterworth-Heinemann, 1998.
[93] H. Kim, C. Chang and H Lee, “Evolution of Inclusions and Resultant Microstructural change with Mg addition in Mn/Si/Ti Deoxidized Steels” Scripta Materl. Vol. 53 (2005) p.p. 1253-1258.
[94] S. Kimura, K. Nakajima and S. Mizoguchi, “Behavior of Alumina-magnesia Complex Inclusions and Magnesia Inclusions on the Surface of Molten Low-carbon Steels” Metallurgical and Materials and Transactions B. vol. 32 (2001) p.p. 79-85.
[95] J. Li, J. Wang and G. Yang, Phase field modeling of grain boundary migration with solute drag. Acta Materialia, 2009, vol. 57, p.p. 2018-2120.
[96] Burke J and Turnbull D, “Recrystallization and Grain Growth” Process in Metal Physics. vol. 3. (1952) p.p. 220-292.
[97] G. Gottstein and L. S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. Second edition. CRC Press, 2009.
[98] O.M. Akselsen, “Advances in brazing of ceramics” Journal of Materials Science vol. 27 (1992) p.p. 1989-2000.
[99] F. J. Barbaro, P. Kraulis and K.E. Easterling, “Formation of Acicular Ferrite at Oxide Particles in Steels” Materials Science and Technoloygy. vol. 5 (1989) p.p. 1057-1068
[100] M. X. Zhangam and P. M. Kellya, “Determination of Carbon Content in Vainitic Ferrite and Carbon Distribution in Austenite by Using CBKLDP” Materials Characterization. vol. 40 (1998) p.p. 159-168.
[101] D.A. Porter and K.E. Easterling, Phase Transformations in Metal and Alloys, Chapman & Hall, London, 1992.
[102] 潘燕琦, “含鎂低碳鋼中誘導針狀肥粒鐵形成之研究” 成功大學材料科學及工程學系碩士學位論文. 2016.
[103] G.A. Chadwick, Metallography of phase transformations, Butterworths, London, 1972.
[104] U. Dahmen, "Orientation Relationships in Precipitation Systems” Acta Metallurguca vol. 30 (1982) p.p. 63-73.
[105] Z . Nishiyama, “X-ray investigation on the mechanism of the transformation from face-centered cubic lattice to body-centered cubic lattice” The Science Reports of the Research. vol. 23 (1934) p.p. 637–664.
[106] G.Kurdjumow G.Sachs, “Über den Mechanismus der Stahlhärtung“ Zeitschrift für Physik. vol. 64 (1930) p.p. 325-343.
[107] E. C. Bain, “Crystal Structure of Solid Solutions” Transactions AIME. vol. 68 (1923) p.p. 625–639.
[108] W. Pitsch, A. Schrader, “Die Ausscheidungsform des “ε‐Karbids im Ferrit und im Martensit beim Anlassen” Steel Research. vol. 29 (1958) p.p. 715-721.
[109] J. W. Cahn, The impurity drag effect on grain boundary motion, Acta Metall. 10(1962) 789-798.
[110] K. B. Kang, O. Kwon, W. B. Lee, C. G. Park, Effect of precipitation on the recrystallization behavior of a Nb containing steel. Scripta Mater. vol. 36(1997) p.p. 1303-1308.
[111] C. W. Sinclair, C. R. Hutchinson, Y. Brechet, The Effect of Nb on the Recrystallization and Grain Growth of Ultra-High-Purity a-Fe: A Combinatorial Approach, Metal. Mater. Trans. A. vol. 38 (2007) p.p. 821-830.
[112] D. Amram, C.A. Schuh, Interplay between thermodynamic and kinetic stabilization
mechanisms in nanocrystalline Fe-Mg alloys. Acta Mater. vol. 144 (2018) p.p. 447-458.
[113] L. Bornstein, Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag, Berlin, 1987.
[114] Lücke, K. and K Detert, A quantitative theory of grain boundary motion and recrystallization in metals in the presence of impurities. Acta Metallurgica, (1957) Vol. 5 628-637
[115] M. I. Mendelev and D. J. Srolovitz, A regular solution model for impurity drag on a migrating grain boundary. Acta Materialia, (2001) vol. 49, p.p. 589-597.
[116] M. Hillert, Solute drag, solute trapping and diffusional dissipation of Gibbs energy. Acta Materialia, (1999) vol. 47, p.p. 4481-4505.
[117] Lücke, K. and G. Gottstein, Grain boundary motion—I. Theory of vacancy production and vacancy drag during grain boundary motion. Acta Metallurgica, (1981) vol. 29 p.p. 779-789.
[118] J. W. Cahn, The impurity drag effect in grain boundary motion. Acta Metallurgica, (1962) vol. 10, p.p. 789-798.
[119] AMCSD Diffraction Search, http://rruff.geo.arizona.edu/AMS/amcsd.php.
[120] S. G. Kim, Y. B. Park, Grain boundary segregation, solute drag and abnormal grain growth. Acta MAterialia, (2008) vol. 56, p.p. 3739-3753.
[121] 潘涛、杨志刚、白秉哲、方鸿生,”钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究” 金屬學報 (2003) vol 39 p.p. 1037-1042.
[122] A. S. Madhusudhan Rao and K. Narender, Studies on Thermophysical Properties of CaO and MgO by γ-Ray Attenuation. J. Thermodynamics. (2014) vol. 2014, p.p. 1-8
[123] Y. K. Lee, H. J. Kim, R. W. Chang, Thermal expansion properties of Plasma-sprayed thick coatings. Proceedings of the 15th International Thermal Spray Conference. 1998. p.p. 1629
[124] H. H. Jin, J. H. Shim, Y. W. Cho, H. C. Lee, Formation of Intragranular Acicular Ferrite Grains in a Ti-containing Low Carbon Steel. ISIJ int. (2003) vol. 43, p.p. 1111-1113.
[125] P. A. Beck, P. R. Sperry, H. Hu, The orientation Dependence of the Rate of Grain Boundary Migration. J. Applied Phy. (1950) vol. 21 p.p. 420-425.
[126] P. A. Beck, P. R. Sperry, Strain Induced Grain Boundary Migration in High Purity Aluminum. J. Applied Phy. (1950) vol. 21 p.p. 150-152.
[127] 賴致廷, “鎂添加對SS400低碳鋼於高溫下沃斯田鐵晶粒成長之影響” 成功大學材料科學及工程學系碩士學位論文. 2017.
[128] M. Hillert, On the Theory of Normal and Abnormal Grain Growth. Acta Metallurgica. (1965) vol. 13, p.p. 227-238.
[129] H Y. Lee, R. Freer, The Mechanism of Abnormal Grain Growth in Sr0.6Ba0.4Nb2O6 Ceramics. J. Applied Phy. (1997) vol. 81 p.p. 376-382.
[130] D. F. K. Hennings, R. Janssen, P. J. L. Reynen, Control of Liquid-Phase-Enhanced Discontinuous Grain Growth in Barium Titanate. J. American Ceramic Society. (1987) vol. 70 p.p. 23-27.
[131] J. S. Choi, D. Y. Yoon, The Temperature Dependence of Abnormal Grain Growth and Grain Boundary Faceting in 316L Stainless Steel. ISIJ int. (2001) vol. 41 p.p. 478-483.
[132] H. Bhadeshia and J. Christian, "Bainite in Steels," Metallurgical Transactions A, (1990) vol. 21, pp. 767-797.
[133] Y. Murakami, Metal Fatigue, Effects of Small Defects and Nonmetallic Inclusions. First Edition, Elsevier Science, 2002.
[134] E. A. Brandes, G. B. Brook, Smithells Metals Reference Book, Seven Edition, Butterworth & Heinemann, 1992.
[135] T. Cosgrove, Colloid Science: Principles, Methods and Applications, Second Edition, John Wiley & Sons Ltd, 2010.
[136] N. H. V. Dijk, W. G. Bouwman, S. E. Offerman, M. T. Rekveldt, J. Sietsma, S. V. Zwaag, A. Bodin, R. K. Heenan, High Temperature SANS Experiments on Nb (C,N) and MnS Precipitates in HSLA Steel. Metall. Mater. Trans. A, (2002) vol. 33, p.p. 1883-1891.
[137] N. Fujiyama, T. Nishibata, A. Seki, H. Hirata, K. Kojima, K. Ogawa, Austenite Grain Growth Simulation considering the Solute-drag Effect and Pinning Effect. Sci. Tech. Adv. Maer. (2017) vol. 18 p.p. 88-95.
[138] 賴暄澔 “含鎂添加之SS400低碳鋼中介在物之高溫臨場研究” 成功大學材料科學及工程學系碩士學位論文. 2018.
[139] R. T. Dehoff, G. Q. Liu, On the Relation between Grain Size and Grain Topology. Metallurgical Trans. A. (1985) vol. 16, p.p. 2007-2011.
[140] D. A. Abova. The Arrangement of Grains in a Polycrystal. Metallorgraphy. (1970) vol. 3, p.p. 383-390.
[141] J. T. Park, J. A. Szpunar. Texture Development during Grain Growth in Nonoriented Electrical Steels. ISIJ int. (2005) vol. 5, p.p. 743-749.
校內:2024-01-24公開