| 研究生: |
鍾婷珮 Chung, Ting-Pei |
|---|---|
| 論文名稱: |
導入快速初始反應機制至伯努利Kullback-Leibler資訊管制圖及其適用狀況 Implementing fast initial response scheme in Bernoulli Kullback-Leibler information control chart and its applicable situations |
| 指導教授: |
張裕清
Chang, Yu-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 不合格率管制圖 、伯努利過程 、CUSUM 、EWMA 、GLR 、快速初始反應(fast initial response) 、Kullback-Leibler資訊管制圖 |
| 外文關鍵詞: | Fast Initial Response, Kullback-Leibler information, Average Number of Observations to Signal, Bernoulli KLI control charts |
| 相關次數: | 點閱:22 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步與品質管理觀念的發展,統計製程管制的概念逐漸受到企業重視,成為現代品質管理的重要工具,管制圖是其中一種常用的手法,用於監控製程是否發生變異並及時發出警訊,確保產品品質的穩定性。伯努利過程是由一系列完全相同的獨立試驗所組成,每次試驗僅有成功或失敗兩種可能,適合監測大量二元事件的比例變動,伯努利過程的應用範圍廣泛,適用於許多品質監控的實務場景,包括工廠中的合格品與不合格品、醫學治療的成功與否、顧客對產品的滿意與否,因此本研究選擇使用伯努利過程建構管制圖。常見的管制圖包括傳統的修華特管制圖、累積和管制圖(CUSUM)及指數加權移動平均管制圖(EWMA),但這些管制圖均需事先設定參數,而參數設定若與實際製程情況不符,可能影響監控效果。為了解決參數設定的問題,一般化概似比管制圖(GLR)被提出,然而在以伯努利GLR 管制圖監控不合格率時,仍需設立參數上限,以避免連續出現不合格品時計算統計量無定義的情況,這表明部分 GLR 管制圖仍存在參數設定的限制。為了進一步解決此問題,本研究使用Kullback-Leibler information建構伯努利管制圖,該管制圖無需設立參數,且能分別監測不合格率的上升、下降,以及同時監控上升與下降情況。快速初始反應機制(Fast Initial Response, FIR)是一種管制圖提升製程初期監控績效的機制,目的是為了提高對製程初期發生異常的偵測速度,該機制的優點為即時識別製程初期的變化或異常,從而快速做出干預和調整策略,適用於製程初期不穩定的狀況,但若製程初期已處於穩定狀態,使用FIR機制反而可能產生更多的負面影響,導致製程的生產成本增加,因此本研究將FIR導入至伯努利Kullback-Leibler資訊管制圖,並建構期望成本模型,透過期望成本之比較,幫助使用者分析和判斷導入此機制的適用狀況,以提高管制圖偵測績效。
This study investigates the applicable situations for implementing Fast Initial Response (FIR) scheme in Bernoulli KLI control charts from a cost perspective. A simulationbased cost model incorporating linear and quadratic delay components is developed to evaluate expected monitoring costs under various FIR settings. Monte Carlo simulations estimate the Average Number of Observations to Signal (ANOS) across different ratios and out-of-control probabilities. FIR is designed to enhance the performance of control charts in the early stages of process monitoring. Its primary objective is to improve the detection speed of abnormalities occurring at the beginning of a process. However, if the process is already in a stable state at the beginning, applying FIR may increasing production costs. Therefore, this study constructs an expected cost model. By comparing the expected costs, this research aims to assist users in analyzing and determining the appropriate situations for implementing FIR, enhancing the detection performance of control charts.
王尊輿(民110)。用於監控不良率之幾何Kullback-Leibler資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
李哲維(民110)。伯努利Kullback-Leibler資訊管制圖用於監控不合格率。國立成功大學工業與資訊管理研究所碩士論文。
呂倢瑩(民111)。用於監控批次生產之不合格率Kullback-Leibler資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
房宣名(民113)。建構多項分配Kullback-Leibler資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
林煒倫(民113)。導入快速初始反應機制於Kullback-Leibler資訊管制圖監控製程平均數以及變異數並分析其使用時機。國立成功大學工業與資訊管理研究所碩士論文。
張景富(民112)。導入快速初始反應機制至Kullback-Leibler資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
趙昱琳(民111)。用於監控不良率之負二項Kullback-Leibler資訊管制圖。國立成功大學工業與資訊管理研究所碩士論文。
Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
Alwan, L., Ebrahimi, N., & Soofi, E. (1998). Information theoretic framework for process control. European Journal of Operational Research, 111, 526–542.
Borror, C., Montgomery, D., & Runger, G. (1999). Robustness of the ewma control chart to non-normality. Journal of Quality Technology, 31(3), 309–316.
Bourke, P. (1991). Detecting a shift in fraction nonconforming using run-length control charts with 100-percent inspection. Journal of Quality Technology, 23(3), 225–238.
Cachon, G., & Fisher, M. (2000). Supply chain inventory management and the value of shared information. Management Science, 46, 1032–1048.
Calvin, T. (1983). Quality-control techniques for zero defects. IEEE Transactions on Components Hybrids and Manufacturing Technology, 6, 323–328.
Carrillo, J., & Gaimon, C. (2004). Managing knowledge based resource capabilities under uncertainty. Management Science, 50, 1504–1518.
Goh, T. (1987). A control chart for very high yield processes. Quality Assurance, 13, 18–22.
Han, D., & Tsung, F. (2006). A reference-free cuscore chart for dynamic mean change detection and a unified framework for charting performance comparison. Journal of the American Statistical Association, 101(437), 368–386.
Hawkins, D., Qiu, P., & Kang, C. (2003). The changepoint model for statistical process control. Journal of Quality Technology, 35(4), 355–366.
Huang, W., Reynolds, M., & Wang, S. (2012). A binomial glr control chart for monitoring a proportion. Journal of Quality Technology, 44(3), 192–208.
Huang, W., Wang, S., & Reynolds, M. (2013). A generalized likelihood ratio chart for monitoring bernoulli processes. Quality and Reliability Engineering International, 29(5), 665–679.
KazemiNia, A., Gildeh, B., & Ganji, Z. (2018). The design of geometric generalized likelihood ratio control chart. Quality and Reliability Engineering International, 34, 953–965.
Kullback, S. (1978). Information theory and statistics. New York, NY: Dover Publications.
Kullback, S., & Leibler, R. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22, 79–86.
Kupperman, M. (1956). Further applications of information-theory to multivariate-analysis and statistical-inference. Annals of Mathematical Statistics, 27(4), 1184–1186.
Lee, J., Peng, Y., Wang, N., & Reynolds, M. (2017). A glr control chart for monitoring a multinomial process. Quality and Reliability Engineering International, 33(8), 1773–1782.
Lee, J., & Woodall, W. (2018). A note on glr charts for monitoring count processes. Quality and Reliability Engineering International, 34, 1041–1044.
Lucas, J., & Crosier, R. (1982). Fast initial response for cusum quality-control. Technometrics, 42(1), 102–107.
Lucas, J., & Saccucci, M. (1990). Exponentially weighted moving average control schemes: properties and enhancements. Technometrics, 32(1), 1–12.
Mousavi, S., & Reynolds, M. (2009). A cusum chart for monitoring a proportion with autocorrelated binary observations. Journal of Quality Technology, 41(4), 401–414.
Page, E. (1954). Continuous inspection schemes. Biometrika, 41(1), 100–115.
Reynolds, M., & Stoumbos, Z. (1999). A cusum chart for monitoring a proportion when inspecting continuously. Journal of Quality Technology, 31(1), 87–108.
Roberts, S. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239–250.
Ryan, A., Wells, L., & Woodall, W. (2011). Methods for monitoring multiple proportions when inspecting continuously. Journal of Quality Technology, 43(3), 237–248.
Spliid, H. (2010). An exponentially weighted moving average control chart for Bernoulli data. Quality and Reliability Engineering International, 26(1), 97–113.
Steiner, S. H., & MacKay, R. J. (2004). Effective monitoring of processes with parts per million defective. Milwaukee, WI: ASQ Quality Press.
Sun, J., & Zhang, G. (2000). Control charts based on the number of consecutive conforming items between two successive nonconforming items for the near zero-nonconformity processes. Total Quality Management, 11(2), 235–250.
Tsai, W. (1998). Quality cost measurement under activity-based costing. International Journal of Quality Reliability Management, 15, 719–752.
Wang, N., & Reynolds, M. (2015). The generalized likelihood ratio chart for monitoring a proportion with autocorrelation. Quality and Reliability Engineering International, 31, 1023–1034.
Yeh, A., Mcgrath, R., Sembower, M., & Shen, Q. (2008). Ewma control charts for monitoring high-yield processes based on non-transformed observations. International Journal of Production Research, 46(20), 5679–5699.