| 研究生: |
梁瑜軒 Liang, Yu-Hsuan |
|---|---|
| 論文名稱: |
氫氣處理對氧化鎵薄膜氣體感測器特性之影響 Effect of hydrogen treatment on the characteristics of Ga2O3 thin film gas sensor |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 氣體感測器 、氧化鎵 、氫氣處理 、氧空缺 、光致螢光光譜 、氣體感測機制 |
| 外文關鍵詞: | gas sensor, gallium oxide, hydrogen treatment, oxygen vacancy, photoluminescence spectrum, gas sensing mechanism |
| 相關次數: | 點閱:102 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以真空蒸鍍與水蒸氣熱氧化法(Rheotaxial growth and thermal oxidation with water vapor)製備氧化鎵薄膜氣體感測器,藉由改變氧化時間1.5~24小時與在不同氫氮混合氣氛(10~100sccm氫氣/100sccm氮氣)下蝕刻反應處理10~90分鐘來探討其表面型態、晶態結構、氧空缺相對濃度、元素比例以及感測性質之變化。
由SEM結果發現氫氣會與氧化鎵產生反應,侵蝕薄膜微結構,破壞表面片狀堆疊。XRD分析顯示氫氣處理後晶相仍維持β-Ga2O3。由光致螢光光譜分析發現以100sccm氫氣/100sccm氮氣之混合氣蝕刻反應處理20分鐘,可獲得最高的氧空缺濃度,但過度的氫氣處理,反而使氧化鎵薄膜厚度被反應消耗掉,減少氧空缺總量。根據酒精感測結果發現氧化1.5小時,再經100sccm氫氣/100sccm氮氣之混合氣蝕刻反應處理10~30分鐘之試片,其感測起始操作溫度降低至195~225℃,可減少感測器運作的能源損耗。在氮氣/酒精氣氛下進行感測比在空氣/酒精氣氛下可提升感測度,推測可能是少了氧氣去抓晶格氧原子與酒精反應所釋放的電子及與氧空缺結合時去吸收的電子,因此在氮氣/酒精氣氛中氣體感測機制比較接近氧空缺機制。
In this study, Ga2O3 thin film gas sensor was prepared by rheotaxial growth and thermal oxidation (RGTO) with water vapor. By changing the oxidation time from 1.5 to 24hr and treating under various H2 concentration of H2 and N2 gas mixture (10~100sccm H2/100sccm N2) for 10 to 90 minutes, the surface morphology, crystalline structure, the relative concentration of oxygen vacancies, the O/Ga element ratio, and the sensing properties, were investigated.
The SEM results showed that the hydrogen reacts with Ga2O3 thin film, leading to a damage of the microstructure such as the destruction of the sheet stack . XRD analysis showed that the crystalline phase remains unchanged, i.e., β-Ga2O3 after the hydrogen treatment. Photoluminescence spectrum analysis showed that the treatment with 100sccm H2/100sccm N2 for 20 minutes leads to the highest concentration of oxygen vacancies. However, an excessive hydrogen treatment will etch away the gallium oxide film to reduce the total amount of oxygen vacancies.The sensing experimental results showed that oxidizing Ga film for 1.5hr and then treating with 100sccm H2/100sccm N2 for 10 to 30 minutes results in a Ga2O3 film with an operating temperature decreasing to 195~225℃. The sensitivity in the nitrogen/ethanol atmosphere is much better than that in the air/ethanol atmosphere. The reason may be resulted from that no oxygen capture the electrons released by the reaction of the ethanol and lattice oxygen and absorb the electrons during the refilling of oxygen vacancy. Therefore, the underlying gas sensing mechanism in the nitrogen/ethanol atmosphere can be explained by the oxygen-vacancy model.
1. 葉陶淵,化學感測器中氣體感測器的新動向,科儀新知,第20卷,第4期,第72-76頁 (1999)
2. P. B. Weise, Effect of electronic charge transfer between adsorbate and solid on chemisorption and catlysis, Journal of Chemical Physics, Vol. 2, pp. 1531-1538 (1953)
3. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, A new detector for gaseous components using semiconductive thin films, Analytical Chemistry, Vol. 34, pp. 1502-1503 (1962)
4. N. Taguchi., Japn.Pat.45-38200(1962)
5. N. Taguchi., U.S.Pat.3631436(1971)
6. P. J. Shaver, Activated tungsten oxide gas detectors, Applied Physics Letters, Vol. 11, pp. 255-257 (1967)
7. A. Trinchi, Y. X. Li and W. Wlodarski, Investigation of Sol-Gel prepared Ga-Zn oxide thin films for oxygen gas sensing, Sensors and Actuators A, Vol. 108, pp. 263-270(2003)
8. A. Ratko, O. Babushkin, A. Barana and S. Baran, Sorption and gas sensitive properties of In2O3 based ceramics doped with Ga2O3, Journal of the European Ceramic Society, Vol. 18, pp. 2227-2232(1998)
9. M.R. Mohammadi and D.J. Fray, Semiconductor TiO2-Ga2O3 thin film gas sensors derived from particulate sol–gel route, Acta Materialia, Vol. 55, pp. 4455-4466(2007)
10. L. Mazeina, Y. N. Picard, S. I. Maximenko, F. K.Perkins, E. R. Glaser, M. E. Twigg, J. A. Freitas, Jr. and S. M. Prokes, Growth of Sn-doped β-Ga2O3 nanowires and Ga2O3-SnO2 heterostructures for gas sensing applications, Crystal Growth & Design, Vol. 9, pp. 4471-4479(2009)
11. A. Taurino, M. Catalanoa, P. Sicilianoa, E. Cominib and G. Sberveglieri, Structural and electrical characterisation of molybdenum-titanium mixed oxides for ethanol sensing deposited by RF sputtering, Sensors and Actuators B, Vol. 92, pp. 286-291(2003)
12. H. Windischmann and P. Mark, A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor, Journal of the electrochemical society, Vol. 126, pp. 627-633 (1979)
13. A. Gurlo and R. Riedel, In situ and operando spectroscopy for assessing mechanisms of gas sensing, Angew Chem Int Ed Engl., Vol. 46, pp. 3826-3848 (2007)
14. 張希誠,感測器的基礎與應用:工廠與機器人篇,第49-51頁(1986)
15. 邱碧秀,氣體感測器:半導體型氣體感測器,科儀新知,第6卷,第6期,第67-71頁(1985)
16. 蔡嬪嬪,氣體感測器的新動向,工業材料,第150期,第98頁(1999)
17. E. A. Symons, Catalytic gas sensors in gas sensors: principles, operation and development, ed. G. Sberveglieri, Boston: Kluwer Academic Publishers, pp. 169 ( 1992)
18. G. Morel, Method development and quality assurance for the analysis of hydrocarbons in environmental samples, International Journal of Environmental Analytical Chemistry, Vol. 63, pp. 269-288 (1996)
19. U. R. Bernier and R. A. Yost, Vacuum operation of the flameioniza-tion detector for gas chromatography, Journal of Chromatographic Science, Vol. 31, pp. 358-362(1993)
20. M. Munidasa, A. Mandelis and A. Katz, Purely thermal wave based non-chemical photopyroelectric gas sensor: application to hydrogen, Journal De Physique, Vol. 4, pp. C7-515-518 (1994)
21. G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice?, Materials Science and Engineering: B, Vol. 139, pp. 1-23(2007)
22. 陳憶萍,真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,國立成功大學碩士論文(2004)
23. 陳烐培,在不同氧化條件下以真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,國立成功大學碩士論文(2005)
24. 薛永浚,不同升溫條件對真空蒸鍍熱氧化法製備氧化鎵薄膜型態及感測特性之研究,國立成功大學碩士論文(2006)
25. 袁士庭,水蒸氣熱氧化法製備碳/氧化鎵異質界面薄膜氣體感測器之研究,國立成功大學碩士論文(2008)
26. N. Al-Hardan, M.J. Abdullaha and A. Abdul Aziz, The gas response enhancement from ZnO film for H2 gas detection, Applied Surface Science, Vol. 255, pp. 7794-7797(2009)
27. V. Khranovskyy, J. Eriksson, A. Lloyd-Spetz, R. Yakimova and L. Hultman, Effect of oxygen exposure on the electrical conductivity and gas sensitivity of nanostructured ZnO films, Thin Solid Films, Vol. 517, pp. 2073-2078(2009)
28. N. Al-Hardan , M.J. Abdullaha and A. A. Aziz, Electron transport mechanism of thermally oxidized ZnO gas sensors, Physica B, Vol. 405, pp. 4509-4512(2010)
29. D. Wang, J. Jin, D. Xia, Q. Ye and J. Long, The effect of oxygen vacancies concentration to the gas-sensing properties of tin dioxide-doped Sm, Sensors and Actuators B, Vol. 66, pp. 260–262 (2000)
30. 陳碩宇,碳膜和鎵膜對真空蒸鍍熱氧化法製備之氧化鎵薄膜氣體感測器感測特性之影響,國立成功大學碩士論文(2010)
31. L. Binet and D. Gourier, Origin of the blue luminescence of β-Ga2O3, Journal of Physics and Chemistry of Solids, Vol. 59, pp. 1241-1249 (1998)
32. J. Hao and M. Cocivera, Optical and luminescent properties of undoped and rare-earth-doped Ga2O3 thin films deposited by spray pyrolysis, Journal of Physics D: Applied Physics, Vol. 35, pp. 433-438 (2002)
33. S. Geller, Crystal structure of β-Ga2O3, The Journal of Chemical Physics, Vol. 33, pp. 676-684 (1960)
34. R. Roy, V. G. Hill and E. F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3-H2O, Journal of the American Ceramic Society, Vol. 74, pp. 719-722(1952)
35. H. H. Tippins, Optical absorption and photoconductivity in the band edge of β-Ga2O3 , Physical Review A, Vol. 140, pp. 316-319 (1965)
36. T. Matsumoto, M. Aoki, A. Kinoshita and T. Aono, Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3, Japanese Journal of Applied Physics, Part 1 13, pp. 1578(1974)
37. N. Ueda, H. Hosono, R. Waseda and H. Kawazoe, Anisotropy of electrical and optical properties in β-Ga2O3 single crystals, Applied Physics Letters, Vol. 71, pp. 933-935 (1997)
38. L. N. Cojocaru and I. D. Alecu, Electrical properties of β-Ga2O3, Zeitschrift fur Physikalische Chemie Neue Folge, Bd. 84, pp. 325-331 (1973)
39. M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose and M. Honda, Donor structure and electric transport mechanism in β-Ga2O3, Physical Review B, Vol. 68, pp. 155207(2003)
40. M.Fleischer, W.Hanrieder and H.Meixner, Stability of semicon-ducting gallium oxide thin films, Thin Solid Films, Vol. 190, pp. 93-102 (1990)
41. J. A. Kohn, G. Katz and J. D. Broder, Characterization of β-Ga2O3 and its alumina isomorph, θ-Al2O3, The American Mineralogist, Vol. 42, pp. 398-407 (1957)
42. P. Kofstad, “Defect reactions” in Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides, New York: Wiley-Interscience, pp. 15 (1972)
43. F. A. Kroger, Detailed description of crystalline solids; imperfections , The Chemistry of Imperfect Crystals, Vol. 2, New York: North-Holland Pub. Co., American Elsevier, pp. 1(1974)
44. J. Geurts, S. Rau, W. Richter and F. J. Schmitte, SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies, Thin Solid Films, Vol. 121, pp. 217-225 (1984)
45. E. Steinbeiss, Thin film deposition techniques (PVD), Lecture Notes in Physics, Vol. 569, pp.298-315(2001)
46. 國家科學研究院儀器科學研究中心,真空技術與應用(2001)
47. 陳寶清,真空表面處理工學,表面雜誌,第31期(1992)
48. 賴耿陽,真空蒸鍍應用技術,復漢出版社(1991)
49. J. A. Venables, G. D. T. Spiller and M. Hanbucken, Nucleation and growth of thin film, Reports on Progress in Physics, Vol. 47, pp. 399-459(1984)
50. J. A. Venables and G. L. Price, Nucleation of thin films in epitaxial growth , ed. J. W. Matthews, New York :Academic Press, pp. 381(1975)
51. V. E. Bauer, Phanomenologische theorie der kristallabscheidung an oberflachen, I. Zeitschrift fur Kristallographie, Bd., Vol. 110, pp. 372-394(1958)
52. 林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料,第157期,第163-169頁(2000)
53. Z. Zeleny, Proc.Camb.Phil.Soc., Vol. 18, pp. 71(1915)
54. S. R .Morrision, Chemical sensors in semiconductor sensors , ed.S.M.Sze,New York:John Wiley and Sons, Inc., pp.383(1994)
55. D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sensors and Actuators, Vol. 18, pp.71-113 (1989)
56. N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama, Interactions of tin oxide surface with O2, H2O and H2, Surface Science, Vol. 86, pp. 335-344 (1979)
57. Yasuhiro Shimizu and Makoto Egashira, Basic aspects and challenges of semiconductor gas sensors, MRS Bulletin, Vol. 24, pp. 18-24(1998)
58. H. Ogawan, M. Nishikawa and A. Abe, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films, Journal of Applied Physics,Vol. 53, pp. 4448(1982)
59. G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors, Materials Science and Engineering R, Vol. 61, pp. 1-39(2008)
60. D. P. Butt, Y. S. Park and T. Taylor, Thermal vaporization and deposition of gallium oxide in hydrogen , Journal of Nuclear Materials, Vol. 264, pp. 71 (1999)
61. M. Fleischer, J. Giber and H. Meixner, H2-induced changes in electrical conductance of β-Ga2O3 thin-film systems, Applied Physics A, Vol. 54, pp. 560-566(1992)
62. M. Fleischer and H. Meixner, Fast gas sensors based on metal oxides which are stable at high temperatures , Sensors and Actuators B, Vol. 43, pp. 1-10(1997)
63. C. H. Ho, C. Y. Tseng, and L. C. Tien, Thermoreflectance characterization of β-Ga2O3 thin-film nanostrips, Optics Express, Vol. 18, pp.16360-16369(2010)