簡易檢索 / 詳目顯示

研究生: 陳啟峰
Chen, Chi-Feng
論文名稱: 應用於未知環境探索的尋物機器人實作
Implementation of an Object-finding Robot for Exploration in Unknown Environments
指導教授: 蔡佩璇
Tsai, Pei-Hsuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 52
中文關鍵詞: 機器人作業系統自主移動機器人SLAM未知環境探索
外文關鍵詞: Robot Operating System, Autonomous Mobile Robot, Simultaneous Localization and Mapping, Unknown Environment Exploration
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尋找特定物目標可應用於許多應用場域中,如工業自動化、倉儲物流和搜救任務。但是,在未知的環境中搜索特定物件是一個具有挑戰性的問題,因為機器人需要具備感知、探索和決策的能力,同時能夠適應動態環境。

      過去的研究提供了各種方法和技術來解決這個問題,包括視覺感知、路徑規劃和機器學習。然而,這些方法往往受限於已知的環境或需要預先建立的地圖和物體模型。在實際應用中,可能會面對一個未知且動態的環境,所以需要一種能夠實時感知和適應環境變化的方法。

      這項研究的目的是設計和實作一個能夠在未知環境中找到特定物體的機器人系統。該系統將整合視覺感知、決策策略和馬達控制,以達到自主尋找物體的能力。我們將使用特徵點方法進行相機圖像處理,並將其與路徑規劃演算法結合,以實現機器人在未知環境中的尋物探索。

    This paper introduces a method for implementing a object-finding robot for exploration in unknown environments. Initially, the concept of a networked physical system illustrates the hardware components needed to build an autonomous mobile robot, explaining how the hardware components interact. After the hardware implementation is complete, the software focuses on two main functions, given the goal of exploring and searching in an unknown environment: "path planning algorithms for exploration in unknown environments" and "object recognition based on feature points". The article proposes three different experimental variables: "changing the field area", "altering the robot's initial facing direction", and "changing the position of obstacles". Since it's about exploring unknown environments, it's essential to use SLAM technology to record map information of the environment during its journey. Only with this step can the boundaries of visited areas be logged, directing the exploration towards other potential unknown areas for target objects.

    摘要 I Implementation of an Object-finding Robot for Exploration in Unknown Environments II 致謝 IX 表目錄 XIV 圖目錄 XV 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究方法與步驟 3 1.4 論文架構 5 第2章 文獻探討 6 2.1 在未知環境探索的路徑規劃演算法 6 2.2 機器人的物件辨識 7 第3章 尋物機器人的硬體設計 8 3.1 感測器 8 3.2 控制器 9 3.3 執行器 10 第4章 尋物機器人的軟體設計 11 4.1 特徵提取與比對 11 4.2 探索模式 12 4.3 接近模式 12 第5章 實驗結果 14 5.1 實驗場地與選用評估指標 14 5.2 變更場地面積 16 5.3 變更機器人起始面對方向 20 5.4 變更障礙物擺放位置 26 第6章 結論與未來研究方向 32 6.1 結論 32 6.2 未來方向 32 參考文獻 33

    [1] R. H. Rawung and A. G. Putrada, "Cyber physical system: Paper survey," 2014 International Conference on ICT For Smart Society (ICISS), Bandung, Indonesia, 2014, pp. 273-278, doi: 10.1109/ICTSS.2014.7013187.
    [2] Quigley, Morgan, et al. "ROS: an open-source Robot Operating System." ICRA workshop on open source software. Vol. 3. No. 3.2. 2009.
    [3] frontier_exploration - ROS Wiki: https://wiki.ros.org/frontier_exploration
    [4] Yamauchi, Brian. "A frontier-based approach for autonomous exploration." Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97.'Towards New Computational Principles for Robotics and Automation'. IEEE, 1997.
    [5] Stachniss, Cyrill, John J. Leonard, and Sebastian Thrun. "Simultaneous localization and mapping." Springer handbook of robotics (2016): 1153-1176.
    [6] G. G. Gavindra, H. Kusuma and Tasripan, "Vacuum Cleaner Robot with Staircase Cleaning Feature and Boustrophedon Path Planning," 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 2021, pp. 359-363, doi: 10.1109/ISITIA52817.2021.9502216.
    [7] Choset, Howie. "Coverage of known spaces: The boustrophedon cellular decomposition." Autonomous Robots 9 (2000): 247-253.
    [8] Choset, Howie, and Philippe Pignon. "Coverage path planning: The boustrophedon cellular decomposition." Field and service robotics. London: Springer London, 1998.
    [9] Hasan, Kazi Mahmud, and Khondker Jahid Reza. "Path planning algorithm development for autonomous vacuum cleaner robots." 2014 International Conference on Informatics, Electronics & Vision (ICIEV). IEEE, 2014.
    [10] Manual for find_object_2d package. Available: http://wiki.ros.org/find_object_2d/
    [11] Labbé, M. "Find-Object." 2011, http://introlab.github.io/find-object. Accessed 6 September 2023.
    [12] Du, Guoguang, et al. "Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review." Artificial Intelligence Review 54.3 (2021): 1677-1734.
    [13] Qi, Shaohua, et al. "Review of multi-view 3D object recognition methods based on deep learning." Displays 69 (2021): 102053.

    無法下載圖示 校內:2028-11-30公開
    校外:2028-11-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE