簡易檢索 / 詳目顯示

研究生: 蔡堂宜
Tsai, Tang-Yi
論文名稱: 中國南方風化殼稀土礦場研究
A Study on Rare Earth Ore in Southern China
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 86
中文關鍵詞: 稀土風化殼稀土礦風水龍穴
外文關鍵詞: Rare earth, Weathered crust elution‐deposited rare earth ores, Feng shui, Dragon hole
相關次數: 點閱:79下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究創新的提出將中國傳統風水經驗應用於採礦工程之概念。研究對相為中國福建漳州大帽山礦山,該礦山為一典型中國南方風化殼稀土礦床。主要研究目的為勘察收集記錄大帽山礦山之風水佈局及原素,針對各重要風水原素區進行稀土原素採樣分析,綜合研究結果提出礦山風水與礦山稀土含量之關聯性,並建議在不破壞礦山風水前提下之最佳採礦方式。研究結果顯示,龍穴越重要的地方,稀土原素含量越高,越值得開採。依此所建議之最佳採礦方式為不鋤破陵線礦土挖掘淬取法。本研究證明,依中國風水經驗應用於採礦工程是具可行性的。

    This study suggests a novel idea that applying traditional Chinese feng shui experience to the mining engineering. The subject mine of this research is Taihang Mountain, Zhangzhou, Fujian Province, China, which is a typical weathered crust elution‐deposited rare earth ores of southern China. The purpose of this study are: (1) Investigation and identify the important geomantic omen spots of Fujian Zhangzhou Tai Mo Shan. (2) Sampling and analysis of the content of rare earth elements in those important geomantic omen spots. (3) Providing a scientific approach to and a theoretic feng shui basis for mining method for this ore with high performance and low consumption, and can be applied to optimize the rare earth extraction conditions. The results show that the more important place in Longxian, rare earth element content is higher, and the more worthy of mining. The proposed optimum mining method, which do not disturb the feng shui is digging and on-site leaching. This study proves that it is feasible to apply the Chinese feng shui experience to mining engineering.

    ABSTRACT… ……………………………………………………………………………Ⅰ ACKNOWLEDGMENTS ……………………………………………………………....Ⅲ TABLE OF CONTENTS IV LIST OF FIGURE VI LIST OF TABLE VIII CHAPTER 1 Introduction 1 1.1 Weathered Crust Elution‐deposited Rare Earth Ores 1 1.2 The Purposes of Study 1 CHAPTER 2 Literature Review 3 2.1 Introduction to Rare Earth Elements 3 2.2 The Global Market of Rare Earth Elements 4 2.3 The Role of China 9 2.4 Current Status of Rare Earth Element Mining 11 2.5 Rare Earth Element Potential 13 2.6 The Furture 14 2.7 China’s Rare Earth Ore 18 2.8 In-situ Leaching of Weathered Crust Elution-deposited Rare Earth Ores 20 2.9 Introduction of Dragon Hole Mine 23 2.9.1 Zhangzhou Tai Mo Mountain Dragon Hole Mine 23 2.9.1.1 Procedures for Identify the Dragon Hole 24 2.9.1.2 Comments from Master 26 2.9.1.3 Observation by Experience 33 CHAPTER 3 Experimental Methods 41 3.1 The Mine 41 3.2 Instrument 43 3.3 Research Flow Chart 44 3.4 Project Difficulty Assessment 46 CHAPTER 4 Experimental Results 47 4.1 Mine Site Contact 47 4.2 Traveling Plane 48 4.3 Topography Study 49 4.4 Samples Provided by The Owner 50 4.5 Sampling Plan 52 4.6 Descriptions of Sampling 53 4.7 Sample Analysis 58 4.7.1 Analysis of Samples from the First Site 58 4.7.2 Analysis of Samples from the Second Site 58 4.7.3 Analysis of Concentrate Samples 58 CHAPTER 5 Discussions 62 5.1 Appearance of Samples 62 5.2 Analysis of Concentrate Sample 63 5.3 Analysis of Rare Earth Elements 63 5.4 The Significance of Various RE in Dragon Hole Type Mine 66 5.4.1 Grade Ranking of RE 66 5.4.2 Value of Dragon Hole Mine 69 5.5 The Composition of Rare Earth on Dragon Hole 71 CHAPTER 6 Conclusions and Recommendations 74 6.1 Conclusion 74 6.1.1 Mining Methods 74 6.1.2 The Rare Earth Content on Dragon Hole Site 75 6.1.3 The Rare Earth Grade around The Dragon Hole 76 6.1.4 The Rare Earth Content of Extended-dragon Mountain Range 77 6.2 Recommendation for Mining Sequence 78 6.3 Recommendation for Mine Owner 79 6.4 Recommendation for Future Study 80 Reference 81

    Ali S. H., 2014. Social and environmental impact of the rare earth industries. Resources, vol. 3, no. 1, pp. 123-134.
    Alonso E., Sherman A. M., Wallington T. J., Everson M. P., Field F. R., Roth R., Kirchain R. E., 2012. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environmental Science & Technology, 46, 3406-3414.
    Bao, Z., Zhao, Z., 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in south China, Ore Geology Reviews 33, 519‐535.
    Barakos G., Mischo H., Gutzmer, J., 2015. Rare earth underground mining approaches with respect to radioactivity control and monitoring strategies, in I. B. De Lima & W. Leal (eds), Rare Earths Industry: Technological, Economic, and Environmental Implications, Elsevier, Amsterdam, 121-138.
    Binnemans K., Jones P. T., Van Acker K., Blanpain B., Mishra B., Apelian D., 2013. Rare-earth economics: The balance problem. Journal of the Minerals, Metals & Materials, 65, (7), 846-848.
    Cao Y., Cao Z., Li J.,Qu Q, 2013. Current study situation and development on flotation of rare earth in Baiyunebo mine. Mining Machinery 41, 93‐96.
    Chi, R., Tian, J., 2008. Weathered Crust Elution-deposited Rare Earth Ores. Nova Science Publishers, New York, pp. 15–122.
    Chi, R., Xu, Z., 1999. A solution chemistry approach to the study of rare earth element precipitation by oxalic acid.Metall. Mater. Trans. B Process Metall.Mater. Process. Sci. 30 (2), 189–195.
    Chi, R., Tian, J., Li, Z., Peng, C., Wu, Y., Li, S., Wang, C., Zhou, Z., 2005. Existing state and partitioning of rare earth on weathered ores. J. Rare Earths 23 (6), 756–759.
    Chi, R., Tian, J., Luo, X., Xu, Z., He, Z., 2012. The basic research on the weathered crust elution- deposited rare earth ores. Nonferrous Metals Science and Engineering 3 (4), 1–13.
    Chi, R., Zhou, Z., Xu, Z., Hu, Y., Zhu, G., Xu, S., 2003. Solution-chemistry analysis of ammonium bicarbonate consumption in rare-earth-element precipitation. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 34 (5), 611–617.
    European Commission, 2014. Report on critical raw materials for the EU, viewed 8 February 2016, http://ec.europa.eu/DocsRoom/documents/10010/attachments/1/translations/en/renditions/native
    Haque N., Hughes A., Lim S., Vernon C., 2014. Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact. Resources, 3, (4), 614-635.
    He, Z., Zhang, Z., Yu, J., Zhou, F., Xu, Y., Xu, Z., Chen, Z., Chi, R., 2016. Kinetics of column leaching of rare earth and aluminum from weathered crust elution-deposited rare earth ore with compound ammonium salt. Hydrometallurgy 163, 33–39.
    Humphries M., 2012. Rare earth elements: the global supply chain, CRS Report for Congress, viewed 8 February 2016, https://fas.org/sgp/crs/natsec/R41347.pdf.
    Jordens, A., Cheng, Y.P., Waters, K.E., 2013. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 41, 97–114.
    Jun R., 2000. Selective flotation of bastnaesite from monazite in rare earth concentrates using potassium alum as depressant. Int. J. Miner. Process. 59, 237–245.
    Kennedy J., 2015. Rare earth production, regulatory USA/International constraints and Chinese dominance; The economic viability is bounded by geochemistry and value chain integration, in I B De Lima & W Leal (eds), Rare Earths Industry: Technological, Economic, and Environmental Implications, Elsevier, Amsterdam, 37-55.
    Kiggings R. D., 2015. The political economy of rare earth elements, Palgrave MacMillan, New York.
    Kul, M., Topkaya, Y., Karakaya, I., 2008. Rare earth double sulfates from preconcentrated bastnasite. Hydrometallurgy 93 (3–4), 129–135.
    Li Y, Zuo j. Liu Y., 2007. Application and research of hydroximic acid as collectors on flotation of rare earth ores, Non‐ferrous Mining and Metallurgy 23, 30‐33.
    Li, Y., Tu, A., Zhang, Y., Zhang, M., Chi, R., 2009. Kinetics of leaching rare earth from a weathered crust elution-deposited rare earth ore in South China with mixed ammonium salt. Industrial Minerals & processing 38 (284), 19–24.
    Moldoveanu, G., Papangelakis, V., 2012. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 117, 71–78.
    Moldoveanu, G., Papangelakis, V., 2013. Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate. Hydrometallurgy 131, 158–166.
    Massari S., Ruberti M., 2013. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38, 36-43.
    Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206–210.
    Ouyang, K., Rao, G., Yao, H.,Mao, Y., 2003. Study of southern RE ore leaching by aluminum inhibition. Rare Metals and Cemented Carbides 31 (4), 1–3.
    Roskill, 2015. Rare earths: Market outlook to 2020, 15th Edition, Roskill, London.
    Ruan C., Jun T., 2008. Weathered crust elution‐deposited rare earth ores, Nova Science Publishers, Inc., New York.
    Stanway D., 2015. Fate of global rare earth miners rests on China smuggling crackdown, viewed 8 February 2016, http://ca.reuters.com/article/technologyNews/idCAKCN0PH2DO20150707
    Tang, X., Li, M., 2002. Productive exploration of ion-type rare earth ore by in-situ leach mining. Mining and Metallurgical Engineering 22 (4), 27–29.
    Tang, X., Li, M., Yang, D., 2000. Stope slide in in-situ leaching of ionic type rare earth ore and its counter measures. Met. Miner. 289, 6–12.
    Tian, J., Tang, X., Yin, J., Luo, X., Rao, G., 2013b. Process optimization on leaching of a lean weathered crust elution-deposited rare earth ores. Int. J. Miner. Process. 119, 83–88.
    Tian, J., Yin, J., Chen, K., Rao, G., Jiang, M., Chi, R., 2011. Extraction of rare earths from the leach liquor of the weathered crust elution-deposited rare earth ore with non-precipitation. Int. J. Miner. Process. 3 (98), 125–131.
    Tian, J., Yin, J., Tang, X., Yin, J., Chen, J., Luo, X., Rao, G., 2013a. Enhanced leaching process of a low-grade weathered crust elution-deposited rare earth ore with carboxymethyl sesbania gum. Hydrometallurgy 139, 124–131.
    United States Geological Survey, 2016. Mineral commodity summaries 2015, viewed 8 February 2016, http://minerals.usgs.gov/minerals/pubs/mcs/2015/mcs2015.pdf
    Walters A., Lusty P., Hill A., 2011. Rare earth elements: Mineral profile series, British Geological Survey, Nottingham.
    Xiao S., 2011. Research on method of rare earth ore processing, World Non‐ferrous Metals. 5, 48‐49.
    Xiao, Y., Chen, Y., Feng, Z., Huang, X., Huang, L., Chen, Y., Wang, L.Z., Cui, D., 2015a. Leaching characteristics of ion-adsorption type rare earths ore with magnesium sulfate. Trans. Nonferrous Metals Soc. China 25 (11), 3784–3790.
    Xiao, Y., Feng, Z., Huang, X., Huang, L., Chen, Y.,Wang, L.Z., 2015b. Recovery of rare earths from weathered crust elution-deposited rare earth ore without ammonia-nitrogen pollution: Ι. Leaching with magnesium sulfate. Hydrometallurgy 153, 58–65.

    Yang, Z., 1987. A study on clay minerals from the REE-rich weathered crust developed on the Longnan granite in Jiangxi. Sci. Geol. Sin. 1 (1), 70–80.

    Yang, X., Yang, X., 1999. Geochemical study of REE from granite weathering crusts in Dajishan of Jiangxi province. Chinese Rare Earths 20 (5), 1–5.
    Yang, X., Zhang, J., 2015. Recovery of rare earth fromion-adsorption rare earth ores with a compound lixiviant. Sep. Purif. Technol. 142, 203–208.
    Yao, H., Ouyang, K., Rao, G., 2005. A study on leaching rare earth from the weathered elution deposited rare earth ore with compound leaching reagent. Jiangxi Science 23 (6), 721–726.
    Yu Y., 2000. Development on beneficiation techniques of Chinese REE deposit ores, West China Exploration Engineering. 63, 1−4.

    Zhang, Z., Xu, Z.,Wu, M., Zhang, T., Li, Q., Chi, R., 2013. Study on leaching of rare earth from weathered crust elution-deposited rare earth ore with complex ammonium agents. Nonferrous Metals (Extractive Metallurgy) 4, 32–35.
    Zepf V., 2013. A new approach to the nexus of supply, demand and use: exemplified along the use of neodymium in permanent magnets, Springer-Verlag, Berlin.

    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE