簡易檢索 / 詳目顯示

研究生: 孫維廷
Sun, Wei-Ting
論文名稱: 透過三氮烯裂解合成重氮化合物的方法與可行性的探討
The Syntheses of Diazo Compounds by Decomposition of Triazenes and Their Feasibility Study
指導教授: 周鶴軒
Chou, Ho-Hsuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 177
中文關鍵詞: 氮原子轉移試劑重氮鹽三氮烯重氮化合物
外文關鍵詞: nitrogen atom transfer, diazonium salt, triazene, diazo compound
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 重氮化合物不論是在有機合成或生物醫學方面皆有著諸多實用性,截自目前為止,重氮化合物合成方法主要分為三種: 與疊氮化物進行重氮轉移反應;與肼化合物反應後產生腙,再透過氧化或熱裂解後形成;以膦試劑與疊氮化合物作用,再進行環化、水解、脫氫等反應後形成。除了上述三種以外,近年來還有少數人將與聚合物結合之重氮鹽做為重氮化反應的氮原子來源,與胺反應後生成三氮烯化合物,再經由降解完成重氮化反應,製備與胺對應的重氮化合物,但該方法的效果卻不甚理想,因此我們以此為基礎,並參考使用磷試劑拔除疊氮化合物之氮原子的文獻,對該方法進行改良。本篇研究成功合成出更高效率的氮原子轉移試劑以及原子經濟比過去使用的方法更高,並以此數據對該氮原子轉移反應方式與試劑與的可行性作討論。

    Diazo compounds have many functional applications in organic or biochemical syntheses. In recent years, some scientists used diazonium salts as nitrogen atom transfer reagents that amines reacted with these diazonium polymers to form triazenes which then degraded into corresponding diazo compounds. However, the efficiency of these nitrogen transfer reactions was not ideal enough. Based on this method, we successfully synthesized higher efficiency nitrogen atom transfer reagents and also had better atom economy. The feasibility of such nitrogen atom transfer reagent is discussed.

    摘要................................................. I 英文延伸摘要.......................................... II 謝誌............................................... VIII 表目錄.............................................. XII 圖目錄.............................................. XIII 式目錄............................................... XV 試劑名稱與縮寫對照表................................. XVIII 壹、前言.............................................. 01 一、重氮化合物 (Diazo compounds)...................... 01 二、α-羰基重氮化合物 (α-Diazocarbonyl compounds)....... 06 三、三氮烯化合物 (Triazene compounds).................. 10 四、研究動機........................................... 16 貳、結果與討論......................................... 19 一、實驗設計........................................... 19 二、檢討與改進......................................... 24 (一)水解反應與亞硝化反應的一鍋化......................... 24 (二)自行設計起始物...................................... 25 三、合成步驟............................................ 30 (一) 合成2-乙酰氧基苯重氮鹽10............................ 30 (二) 合成2-(2-(對甲苯磺酰氧基)乙氧基)苯重氮鹽11.............33 (三) 合成2-(2-氯乙氧基)苯重氮鹽12與2-(2-溴乙氧基)苯重氮鹽13... 34 (四) 合成2-(2-氧代乙氧基)苯重氮鹽14....................... 35 (五) 合成2-(2-乙氧基-2-氧代乙氧基)苯重氮鹽15.............. 36 四、反應測試............................................. 43 (一) 反應試劑的選擇...................................... 43 (二) 反應測試............................................ 46 (三) 重氮鹽化合物15的降解測試..............................49 (四) 尋找反應最佳化條件.................................. 52 (五) 反應最佳化條件-鹼的選擇.............................. 55 (六) 反應最佳化條件-溶劑的選擇............................ 58 (七) 最佳反應條件........................................ 59 (八) 三氮烯化合物42的降解測試............................. 67 (九) 使用不同的胺進行反應................................. 68 1. 化合物47的重氮化反應................................... 68 2. 化合物48的重氮化反應....................................72 參、結論................................................. 73 肆、實驗................................................. 76 一、實驗儀器及部分細節.................................... 76 二、實驗操作............................................. 77 (一)氮原子轉移試劑的合成.................................. 77 (二)氮原子轉移反應....................................... 97 1.反應物為化合物40....................................... 97 2.反應物為化合物47....................................... 100 3.反應物為化合物48....................................... 102 (三)三氮烯42的降解...................................... 104 (四)胺的製備............................................ 106 1. 化合物47的合成.........................................106 2. 化合物48的合成.........................................108 3. 化合物62的合成........................................ 108 伍、參考文獻............................................. 111 陸、核磁共振光譜圖........................................ 117 柒、論文中未提及之化合物................................... 161

    1. Griefs, P. Justus Liebigs Ann. Chem., 1858, 106, 123.
    2. Ghandour, N. E.; Soulier, J. C. R. Acad. Sci. Paris, 1971, 272, 243-245.
    3. Huisgen, R. Proc. Chem. Soc., 1961, 357.
    4. Banert, K.; Plefka O., Angew. Chem. Int. Ed., 2011, 50, 6171-6174.
    5. Doyle, M. P.; Forbes, D. C., Chem. Rev., 1998, 98, 911.
    6. Aggarwal, V. K.; Vincente, J. de; Bonnert, R. V., Org. Lett., 2001, 3, 2785.
    7. Nishimura, R. H.; Murie, V. E.; Soldi, R. A.; Lopes, J. L.; Clososki, G. C., J. Braz. Chem. Soc., 2015, 26, 2175-2188.
    8. Doyle, M. P.; Duffy, R.; Ratnikov, M., Zhou, L., Chem. Rev., 2010, 110, 704.
    9. Davies, H. M. L.; Beckwith, R. E. J., Chem. Rev., 2003, 103, 2861.
    10. Arora, R.; Kakkar R., Comput. Theor. Chem., 2017, 1106, 50-57.
    11. Casarrubios, L.; Peterz, J. A.; Brookhart, M.; Templeton, J. L., J. Org. Chem., 1996, 61, 8358.
    12. Lu, Z. J.; Zhang, Y.; Wulff, W. D., J. Am. Chem. Soc., 2007, 129, 7185.
    13. Glaser R.; Farmer, D., Chem. Eur. J., 1997, 3, 1244-1253.
    14. Linder, M. R.; Steurer S.; Podlech. J., Org. synth., 2003, 154-154.
    15. Hashimoto, T.; Naganawa, Y.; Maruoka, K., J. Am. Chem. Soc., 2009, 131, 6614.
    16. Black, T. H., Aldrichim. Acta, 1983, 16, 3-10.
    17. Ferreira, V. F., Curr. Org. Chem., 2007, 11, 177-193.
    18. Ghandour, N. E.; Soulier, J. C. R., Acad. Sci. Paris, 1971, 272, 243-245.
    19. Pellissier, H., Tetrahedron, 2008, 64, 7041-7095.
    20. Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L., Chem. Rev., 2009, 110, 704-724.
    21. Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M., Angew. Chem. Int. Ed., 2001, 40, 1433-1436.
    22. Aggarwal, V. K.; Fulton, J. R.; Sheldon, C. G.; Vicente, J. D., J. Am. Chem. Soc., 2003, 12, 6034-6035.
    23. Bartz, Q. R.; Elder, C. C.; Frohardt, R. P.; Fusari, S. A.; Haskell, T. H.; Johannessen, D. W.; Ryder, A., Nature, 1954, 173, 72-73.
    24. Nicolaou, K. C.; Li, H.; Nold, A. L.; Pappo, D.; Lenzen, A., J. Am. Chem. Soc., 2007, 129, 10356-10357.
    25. Herzon, S. B.; Lu, L.; Woo, C. M.; Gholap, S. L., J. Am. Chem. Soc., 2011, 133, 7260-7263.
    26. Regitz M.; Mass G., Diazo Compounds-Properties and Synthesis, Academic Press, Orlando, 1986.
    27. Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H., Chem. Eur. J., 2003, 9, 4068-4076.
    28. Kemsley, J. N.; Chem. Eng. News, 2011, 89, 15.
    29. Curtius, T., Eur. J. Inorg. Chem., 1883, 16, 2230-2231.
    30. Clark, J. D.; Shah, A. S.; Peterson, J. C.; Patelis, L.; Kersten, R. J.; Heemskerk, A. H., Thermochim. Acta, 2002, 386, 73-79.
    31. Buckley G. D., Levy W. J., J. Chem. Soc., 1951, 3016-3018.
    32. Taber, D. F.; Sheth, R. B.; Joshi, P. V., J. Org. Chem., 2005, 70, 2851-2854.
    33. Nicholas, K. U. G.; Vaughan, K., Can. J. Chem., 1986, 64, 799-802.
    34. Regitz, M., Synthesis, 1972, 351-373.
    35. Fulton, J. R.; Aggarwal, V. K.; Vicente, J. D., Eur. J. Org. chem., 2005, 8, 1479-1492.
    36. Javed, M. I.; Brewer, M., Org. Lett., 2007, 9, 1789.
    37. Schroen, M.; Bräse, S., Tetrahedron, 2005, 61, 12186-12192.
    38. Myers, E. L.; Raines, R. T., Angew. Chem. Int. Ed., 2009, 48, 2359-2363.
    39. Baumgarten, R. J., J. Org. Chem., 1976, 32, 484-485.
    40. Kolar, G. F., In: Chemical Carcinogens. American Chemical Society Washington, DC., 1984, 869-914.
    41. Griess, P., Eur. J. Org. Chem., 1862, 121, 257-280.
    42. Marchesi, F.; Turriziani, M.; Tortorelli, G.; Avvisati, G.; Torino, F.; Vecchis, L. D., Pharmacol. Res., 2007, 56, 275-287.
    43. Beal, D. D.; Skibba, J. L.; Whitnable, K. K.; Bryan, G. T., Cancer Res., 1976, 36, 2827-2831.
    44. Smith Jr, R. H.; Mehl, A. F.; Hicks, A.; Denlinger, C. L.; Kratz, L.; Andrews, A. W.; Michejda, C. J.,J. Org. Chem., 1986, 51, 3751-3757.
    45. Day, B. F.; Campbell, T. W.; Coppinger, G. M., J. Am. Chem. Soc., 1951, 73, 4687-4688.
    46. Peach, M. J.; Le Sueur, C. R.; Ruud, K.; Guillaume, M.; Tozer, D. J., Phys. Chem. Chem. Phys., 2009, 11, 4465-4470.
    47. Bouas-Laurent, H.; Dürr, H., Pure Appl. Chem., 2001, 73, 639-665.
    48. Gross, M. L.; Blank, D. H.; Welch, W. M., J. Org. Chem., 1993, 58, 2104-2109.
    49. Kimball, D. B.; Haley, M. M., Angew. Chem. Int. Edit., 2002, 41, 3338-3351.
    50. Bräse, S.; Schroen, M., Angew. Chem. Int. Ed., 1999, 38, 1071-1073.
    51. Saeki, T.; Son, E. C.; Tamao, K., Org. Lett., 2004, 6, 617-619.
    52. Vanderheiden, S.; Bulat, B.; Zevaco, T.; Jung, N.; Bräse, S., Chem. Commun., 2011, 47, 9063-9065.
    53. Liu, C. Y.; Knochel, P., J. Org. Chem., 2007, 72, 7106-7115.
    54. Patrick, T. B.; Juehne, T.; Reeb, E.; Hennessy, D., Tetrahedron Lett., 2001, 42, 3553-3554.
    55. Satyamurthy, N.; Barrio, J. R.; Bida, G. T.; Phelps, M. E., Tetrahedron Lett., 1990, 31, 4409-4412.
    56. Döbele, M.; Vanderheiden, S.; Jung, N.; Bräse, S., Angew. Chem. Int. Ed., 2010, 49, 5986-5988.
    57. Barbero, M.; Degani, I.; Diulgheroff, N.; Dughera, S.; Fochi, R., Synthesis, 2001, 14, 2180-2190.
    58. Gross, M. L.; Blank, D. H.; Welch, W. M., J. Org. Chem., 1993, 58, 2104-2109.
    59. Bräse, S., Acc. Chem. Res., 2004, 37, 805-816.
    60. Saxon, E.; Bertozzi, C. R., Science, 2004, 287, 2007-2010.
    61. Chang, P. V.; Prescher, J. A.; Hangauer, M. J.; Bertozzi, C. R., J. Am. Chem. Soc., 2007, 129, 8400-8401.
    62. Zhang, Y.; Cao, D.; Liu, W.; Hu, H.; Zhang, X.; Liu, C., Curr. Org. Chem., 2015, 19, 151-178.
    63. Doucet, K. G.; Glister, J. F.; Pye, C. C., Can. J. Chem., 2010, 88, 709-715.
    64. Limbach, H. H.; Männle, F.; Detering, C.; Denisov, G. S., Chem. Phys., 2005, 319, 69-92.
    65. Thakkalapally, A.; Benin, V., Tetrahedron, 2005, 61, 4939-4948.
    66. Butler, R. N., Chem. Rev., 1975, 75, 241-257.
    67. Sieh, D. H.; Wilbur, D. J.; Michejda, C. J., J. Am. Chem. Soc., 1980, 102, 3883-3887.
    68. Regitz, M., Synthesis, 1972, 7, 351-373.
    69. Miwa, K.; Aoyama, T.; Shioiri, T., Synlett, 1994, 2, 107-108.
    70. Proctor, L. D.; Warr, A. J., Org. Process Res. Dev., 2002, 6, 884-892.
    71. Newlands, E. S.; Stevens, M. F. G.; Wedge, S. R.; Wheelhouse, R. T.; Brock, C., Cancer Treat. Rev., 1997, 23, 35-61.
    72. Ray, S.; Ghosh, S., Synth. Commun., 2010, 40, 2377-2388.
    73. Ghalib, M; Jones, P. G.; Heinicke, J. W., J. Org. Chem., 2014, 44, 763-764.
    74. Saeki, T.; Son, E. C.; Tamao, K., Bull. Chem. Soc. Jpn., 2005, 78, 1654-1658.
    75. Lerosen, A. L.; Smith, E.G., J. Am. Chem. Soc., 1949, 71, 2815-2818.
    76. Raiford, L. C.; Alexander, K., J. Org. Chem., 1940, 5, 300-312.
    77. Totton, E. L.; Raiford, L. C., J. Am. Chem. Soc., 1954, 76, 5127-5128.
    78. Lee, Y. H.; Chen, Y. C.; Hsieh, J. C., Eur. J. Org. Chem., 2012, 2, 247-250.
    79. Bariwal, J.; Van der Eycken, E., Chem. Soc. Rev., 2013, 42, 9283-9303.
    80. Hwang, J. J.; Tour, J. M., Tetrahedron, 2002, 58, 10387-10405.
    81. Li, G.; Wang, X.; Li, J.; Zhao, X.; Wang, F., Tetrahedron, 2006, 62, 2576-2582.
    82. Chou, H. H.; Raines, R. T., J. Am. Chem. Soc., 2013, 135, 14936-14939.
    83. Vickers, S.; Triggle, D. J.; Garrison, D. R., J. Chem. Soc. (C), 1968, 632-634.
    84. Yates, P.; Mayfield, R. J., Can. J. Chem., 1977, 55, 145-152.
    85. Jiang, X.; Zheng, C.; Lei, L.; Lin, K.; Yu, C., Eur. J. Org. Chem., 2018, 12, 1437-1442.
    86. Abdellah, E.; Lahboub, B., J. Mar. Chim. Heterocycl., 2006, 21, 62-64.
    87. Yang, K.; Li, Z.; Wang, Z.; Yao, Z.; Jiang, S., Org. Lett., 2011, 13, 4340-4343.
    88. Padala, K.; Jeganmohan, M., Chem. Commun., 2013, 49, 9651-9653.
    89. Ray, S.; Ghosh, S., Synth. Commun., 2010, 40, 2377-2388.
    90. Bagley, J. R.; Thomas, S. A.; Rudo, F. G.; Spencer, H. K.; Doorley, B. M.; Ossipov, M. H.; Jerussi, T. P., Benvenga, M. J.; Spaulding, T., J. Med. Chem, 1991, 34, 827-841.
    91. Jakhar, V. K.; Barman, M. K.; Nembenna, S., Org. Lett., 2016, 18, 4710-4713.
    92. Hari, D. P., Waser, J., J. Am. Chem. Soc., 2016, 138, 2190-2193.
    93. Biancalana, L.; Bortoluzzi, M.; Ferretti, E.; Hayatifar, M.; Marchetti, F.; Pampaloni, G.; Zacchini, S., RSC Adv., 2017, 7, 10158-10174.
    94. Chen, C. C.; Wang, S. F.; Su, Y. Y.; Lin, Y. A.; Lin, P. C., Chem. Asian J., 2017, 12, 1326-1337.
    95. Caldwell, N.; Jamieson, C.; Simpson, I.; Watson, A. J., Chem. Commun., 2015, 51, 9495-9498.
    96. Wiget, P. A.; Manzano, L. A.; Pruet, J. M.; Gao, G.; Saito, R.; Monzingo, A. F., Jasheway, K. R.; Robertus, J. D.; Anslyn, E. V., Bioorg. Med. Chem. Lett., 2013, 23, 6799-6804.
    97. Maji, S. K.; Haldar, D.; Banerjee, A.; Banerjee, A., Tetrahedron, 2002, 58, 8695-8702.
    98. Schmidt, B.; Elizarov, N.; Berger, R.; Hölter, F., Org. Biomol. Chem., 2013, 11, 3674-3691.
    99. Guo, X.; Peng, Z.; Jiang, S.; Shen, J., Synth. Commun., 2011, 41, 2044-2052.
    100. Shi, W.; Jiang, Z.; He, H.; Xiao, F.; Lin, F.; Sun, Y.; Lai, K., ACS Med. Chem Lett., 2018, 9, 94-97.
    101. Wang, R.; Xu, J., Arkivoc, 2010, 9, 293-299.
    102. Kumarasamy, E.; Raghunathan, R.; Jockusch, S.; Ugrinov, A.; Sivaguru, J., J. Am. Chem. Soc., 2014, 136, 8729-8737.
    103. Moody, C. J.; Miah, S.; Slawin, A. M.; Mansfield, D. J.; Richards, I. C., Tetrahedron, 1998, 54, 9689-9700.
    104. Maddani, M. R.; Moorthy, S. K.; & Prabhu, K. R., Tetrahedron, 2010, 66, 329-333.
    105. Periyasamy, S.; Subbiah, S., J. Chem. Pharm. Res., 2016, 8, 510-518.
    106. Choi, G.; Hong, S. H., Angew. Chem. Int. Ed., 2018, 130, 6274-6278.

    無法下載圖示 校內:2023-07-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE