簡易檢索 / 詳目顯示

研究生: 陳冠辰
Chen, Guan-Chen
論文名稱: 結合液晶與玻璃透鏡用於製作全息光學元件之製程與性能改善之研究
Combining both of liquid crystal and glass lenses used to fabricate holographic optical elements and investigate improved performance
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 82
中文關鍵詞: 液晶透鏡全息光學元件複合式透鏡組
外文關鍵詞: Liquid crystal lens, holographic optical elements, Fresnel zone
相關次數: 點閱:105下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對透鏡全息光學元件(Holographic Optical Elements,HOEs)製作與性能進行實驗研究,其製程分別以玻璃透鏡、液態透鏡與液晶透鏡進行並比較所製作之透鏡全息光學元件特性。實驗結果顯示分別以玻璃透鏡與液態透鏡進行透鏡全息光學元件製作其元件特徵均有正常表現,唯獨以液晶透鏡施做之結果,在全息曝光後之光聚合薄膜所記錄的干涉圖樣呈現較為不正常的表現而非一理想的菲涅耳區(Fresnel Zone)干涉圖樣。針對以圓孔型電極液晶透鏡(Hole-Patterned Electrode Liquid Crystal Lens,HPELCLs)施做透鏡全息光學元件所遭遇的問題,實驗利用不同結構參數之液晶透鏡進行並觀察其結果是否改善,雖然液晶透鏡能力的基本量測與觀察都具備理想的條件,但其所製作之透鏡全息光學元件之特徵仍不如玻璃或液態透鏡之結果。於是,實驗結合液晶透鏡與玻璃透鏡成為複合式透鏡組進行透鏡全息光學元件製作與性能分析,實驗結果顯示複合式透鏡組施做之透鏡全息光學元件具有較理想的菲涅耳區(Fresnel Zone)干涉圖樣,並且利用玻璃透鏡進行二次曝光後,可以獲得雙焦距特徵之透鏡全息光學元件。

    In the study, the hole-patterned electrode liquid crystal lenses (HPELCLs) were used to fabricate holographic optical elements (HOEs) and investigate their optical performance. Comparing the HOEs fabricated with glass or liquid lenses, it is not achieved the HOEs with ideal Fresnel zone interference patterns recorded in photopolymer films. This issue was investigated and discussed by means of variously structural conditions of the HPELCLs. Finally, combing both of liquid crystal and glass lenses was used to fabricate the HOEs to successfully achieve the HOEs with obviously recorded Fresnel zone interference patterns and dual focal lengths after double holographic exposure processes along with the tunable focuses of liquid crystal lens. To prevent too closely similar interference of both holographic exposure processes and conditions to distinguish finally two optical focuses, the double holographic exposure processes were sequentially executed with the combined lens and the only glass lens in two different positions of photo-curable polymer films.

    摘要 i Abstract ii 誌謝 viii 目錄 ix 圖目錄 xiii 表目錄 xx 第一章 緒論 1 1.1 前言 1 1.2 研究動機 6 第二章 實驗原理 7 2.1 液晶介紹 7 2.1.1 液晶起源 7 2.1.2 液晶分類 7 2.1.3 液晶的光學特性 8 2.2 圓孔型電極液晶透鏡 13 2.2.1 液晶透鏡原理 13 2.2.2 圓孔型電極液晶透鏡之干涉條紋與焦距 15 2.2.3 圓孔型電極液晶透鏡之不連續線成因與解決方式 18 2.3 全息光學元件 21 2.3.1 全息光學元件干涉原理 21 2.3.2 全息光學元件曝光光路 24 第三章 實驗材料與裝置 26 3.1 實驗材料 26 3.1.1 液晶E7 26 3.1.2 液晶配向劑(Polyimide) 26 3.1.3 NOA65光學膠 27 3.1.4 光聚合薄膜 (Photo-Curable Polymer Film) 27 3.2 圓孔型電極液晶透鏡製作 28 3.2.1 材料用途與相關製程設備 28 3.2.2 圓孔型電極基板製作 29 3.2.3 液晶透鏡組裝 32 3.3 液晶透鏡光學性能量測 34 3.3.1 液晶透鏡相位延遲干涉條紋量測 34 3.3.2 焦距量測 35 3.4 全息光學元件製作 36 3.4.1 全息光學元件之製程光路 36 第四章 實驗結果與討論 39 4.1. 透鏡種類對全息光學元件製作之影響 39 4.1.1 液晶透鏡、玻璃透鏡與液態透鏡所製作之全息光學元件比較 39 4.2. 圓孔型電極液晶透鏡量測 41 4.2.1 相位延遲干涉條紋與焦點 41 4.2.2 理論焦距與測量焦距比較 45 4.3. 液晶透鏡施做全息光學元件 49 4.3.1 相異液晶層厚度於同樣焦距效能時對全息光學元件觀察差異比較 49 4.3.2 同一樣品在不同焦距下錄製之全息光學元件結果比較 52 4.3.3 全息光學元件錄製結果與焦點後對應位置觀察結果比較 55 4.4. 液晶透鏡結合玻璃透鏡施做全息光學元件 60 4.4.1 同側及異側曝光之全息光學元件錄製結果 60 4.4.2 異側曝光之雙焦距全息光學元件曝光條件優化 63 4.4.3 異側曝光之雙焦距全息光學元件錄製結果 65 4.5. 全息光學元件錄製時之雜訊處理 73 4.5.1 全息光學元件錄製時多重反射發生之確認與排除 73 第五章 結果與未來展望 78 5.1 結論 78 5.2 未來展望 79 參考資料 80

    [1] H. Kawamoto, “The history of liquid-crystal displays,” Proceedings of the IEEE, 90(4), 460-500. (2002)
    [2] Y. H. Lin, & H. S. Chen, “ Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428-9436. (2013)
    [3] H. C. Lin, N. Collings, M. S. Chen, Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222-27229. (2012)
    [4] S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679-1684. (1979)
    [5] H. Ren, et al., “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl Phys. 43, 652-653. (2004)
    [6] M. Ye, B. Wang, & S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl Opt. 43(35), 6407-6412. (2004)
    [7] B. Wang, M. Ye, & S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79-81. (2005)
    [8] C. J. Hsu, J. J. Jhang, & C. Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt Express 24(15), 16722-16731. (2016)
    [9] T. Vanackere, T. Vandekerckhove, E. Claeys, J. P. George, K. Neyts, & J. Beeckman, “Improvement of liquid crystal tunable lenses with weakly conductive layers using multifrequency driving,” Opt Lett. 45(4), 1001-1004. (2020).
    [10] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948)
    [11] B. Lee et al, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt Lett.39(1), 127-130(2014)
    [12] Wang, D., Liu, C., & Wang, Q. H. , “Holographic zoom micro-projection system based on three spatial light modulators,” Optics Express, 27(6), 8048-8058. (2019).
    [13] 松本正一、角田市良,“液晶之基礎與應用” 第八版,第四章,國立編譯館,民國94年
    [14] Bruce A. Averill and Patricia Eldredge , “Chemistry: Principles, Patterns, and Applications,” 1st. Edition, Chap. 11.
    [15] Gomes, A. D. S. (Ed.), “New polymers for special applications,” Chap. 11: 139-164. (2012)
    [16] Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 5, John Wiley & Sons (2006)
    [17] Amnon Yariv, Pochi Yeh, “Optical Electronics in Modern Communications,” 6th. Edition, Chap. 1, Oxford University Press Inc. (2007)
    [18] F. C. Frank, “On the theory of liquid crystals,” Faraday Soc, Volume 25. Number 19 (1958)
    [19] I. C. Khoo, “Nonlinear optics, active plasmonic and tunable metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014)
    [20] M. Ye, B. Wang, T. Takahashi, & S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev. 14(4), 173-175. (2007)
    [21] 張繼鴻, “發展一可用電壓調控焦距的液晶元件”,私立中原大學應用物理研究所碩士論文,中華民國九十二年
    [22] M. Ye, & S. Sato, “Optical properties of liquid crystal lens of any size, ” Jpn. J. Appl. Phys. 41, 571-573. (2002)
    [23] H. W. Ren et al, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express, 15. 11328. (2007)
    [24] Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal”, Opt. Master, 21. 643-646. (2002)
    [25] M. Ye, B. Wang and S. Sato, “Driving of liquid crystal lens without disclination line occurring by applying in-plane electric field,” Jpn. J. Appl. Phys, 42. 5086-5089. (2003)
    [26] C. H. Kuo, W. C. Chien, C. T. Hsieh, C. Y. Huang, J. J. Jiang, Y. C. Li, M. F. Chen, Y. P. Hsieh, H. L. Kuo and C. H. Lin, “Influence of pretilt angle on disclination lines of liquid crystal lens,” Appl. Opt, 63 43. 4269-4274. (2012)
    [27] C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination line in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express, 19. 14999-15008. (2011)
    [28] R. J. Collier, C.B. Burckhardt, L.H. Lin, “Optical Holography,” Academic Press New York and London (1971)
    [29] H. L. Zhang, H. Deng, W. T. Yu, M. Y. He, D. H. Li, Q. H. Wang, “Tabletop augmented reality 3D display system based on integral imaging,” JOSA. B 34(5) (2017)
    [30] K. Hong, J. Yeom, C. Jang, J. Hong, B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. lett., 30(1), 127-131 (2014)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE