簡易檢索 / 詳目顯示

研究生: 劉后鴻
Liu, Hou-Hung
論文名稱: 應用田口方法對薄型細間距球閘陣列封裝進行參數最佳化之設計
The Study of Parameters Optimization for Thin Fin-pitch Ball Grid Array by Taguchi Method
指導教授: 潘文峰
Pan, Wen-Funj
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 應變能密度田口氏品質設計法可靠度
外文關鍵詞: strain energy density, Taguchi quality design method, reliability
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因電子封裝的熱循環試驗需要花費大量的時間以及資源,所以利用分析模擬來代替傳統的實驗已經是非常普遍的做法。本文即針對細間距球閘陣列封裝(TFBGA)在溫度循環負載下,先利用ANSYS有限元素分析軟體進行分析相關應力及應變,接著求出關鍵錫球介面層厚度於一個溫度循環負載下所累積的黏塑性應變能密度平均值,之後採用Darveaux所提出的理論計算出該錫球的疲勞壽命作為封裝體的可靠度指標。
    接著進行相關參數最佳化的設計,其中選定的參數因子有印刷電路板、基板、晶片、封膠的厚度及熱膨脹係數,而一次僅改變一個因子進行分析,以了解各因子水準的變動對於封裝體可靠度的影響。最後再利用田口氏品質設計法中田口式直交表的實驗數據,來找出最佳的參數組合,以期使封裝體的可靠度達到最大化的目的。

    Due to the huge cost of the time and resource for thermal cyclic testing of the electronic package, the traditional experiment is commonly replaced by numerical simulation. This article focuses on Thin and Fine-pitch Ball Grid Array (TFBGA) in the temperature cycling load. Firstly, the finite element analysis software ANSYS is used to analyze the relative stress and strain. Next, the average accumulated viscoplastic strain-energy-density of the interface thickness in a temperature cycling load is calculated. Thereafter, the Darveaux theory is applied to determine the fatigue life of the key solder ball which is the reliability indicator of the package.
    Next, the optimal design of the relative parameter factors is discussed. The selected factors include the printed circuit board, substrate, chip, thickness of the mold compound and thermal expansion coefficient. Only one magnitude of the factor changes during an analysis for understanding the influence the level of reliability of the package. Finally, by using the Taguchi orthogonal array experimental results of the Taguchi quality design method, the optimal design of the combination for the parameters is achieved. It is expected that the reliability of the package can be maximized.

    摘要...........................................................I 英文摘要......................................................II 致謝.........................................................III 目錄......................................................... Ⅳ 表目錄....................................................... Ⅷ 圖目錄........................................................Ⅹ 第一章 緒論...................................................1 1-1 前言........................................................1 1-2 研究動機與目的..............................................2 1-3 文獻回顧....................................................2 1-4 研究方法....................................................4 1-5 章節提要....................................................5 第二章 理論基礎...............................................6 2-1 TFBGA封裝體簡介...........................................6 2-2 非線性分析理論............................................7 2-3 錫球材料之亞蘭德黏塑性本構模型............................9 2-4 疲勞壽命預測理論.........................................12 2-5 田口品質工程.............................................15 2-5-1 機能品質特性.....................................15 2-5-2 直交表...........................................16 2-5-3 自由度...........................................16 2-5-4 損失函數.........................................16 2-5-5 信號雜訊比.......................................17 2-5-6 變異數分析.......................................18 2-5-7 回應表和回應輔助圖...............................21 2-5-8 信賴區間.........................................21 第三章 TFBGA模型之建立與分析..................................27 3-1 模型建立與評估...........................................27 3-1-1 TFBGA封裝體模型..................................27 3-1-2 TFBGA封裝體之基本假設條件........................29 3-1-3 邊界條件.........................................30 3-1-4 溫度循環負載.....................................30 3-2 ANSYS整體分析流程........................................30 3-2-1 前處理...........................................31 3-2-2 求解.............................................32 3-2-3 後處理...........................................32 3-3 結論與討論...............................................33 3-4 TFBGA封裝體之收斂分析....................................33 3-4-1 應變能密度收斂分析...............................34 3-4-2 TFBGA封裝體模型之穩定收斂分析....................34 第四章 各因子水準變動對TFBGA疲勞壽命之影響....................45 4-1 單一因子分析.............................................45 4-2 不同因子對封裝體可靠度之影響.............................46 4-2-1 印刷電路板厚度..................................46 4-2-2 基板厚度........................................47 4-2-3 晶片厚度........................................48 4-2-4 封膠厚度........................................49 4-2-5 印刷電路板熱膨脹係數............................49 4-2-6 基板熱膨脹係數..................................50 4-2-7 晶片熱膨脹係數..................................51 4-2-8 封膠熱膨脹係數..................................52 第五章 田口方法之實驗設計與規劃...............................57 5-1 田口方法實驗設計流程.....................................57 5-2 實驗結果與資料分析.......................................60 5-2-1 模擬實驗結果與資料分析.........................60 5-2-2 模型之變異分析................................62 5-2-3 確認實驗......................................64 第六章 結論與未來研究方向.....................................69 6-1 結論.....................................................69 6-2 未來研究方向.............................................70 參考文獻......................................................71 自述..........................................................74

    [1]Lee, S. W., Lau, J. H., “Effect of Chip Dimension and Substrate Thickness on the Solder Joint Reliability of Plastic Ball Grid Array Packages,” Circuit World, Vol. 23(1), pp. 16-19, 1997.

    [2] Mertol, A., “Optimization of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages for Robust Design,” IEEE Transactions on Components Packaging and Manufacturing Technology, Vol. 20, Issue 4, pp. 376-388, 1997 .

    [3] Darveaux, R., ” Effect of Simulation Methodology on Solder Joint Crack Growth Correlation”, Journal of Electronic Packaging, Vol. 124(3), pp. 147-154, 2000.

    [4] Tee, T. Y., Sivakumar, K., and Do-Bento-Vieira, A. A., ” Board Level Solder Joint Reliability Modeling of LFBGA Package”, IEEE Int’l Symp on Electronic Materials and Packaging, pp. 51-54, 2000.

    [5] Guven, I., Kradinov, V., and Madenci, E., ”Finite Element Modeling of BGA Packages for Life Prediction”, Electronic Components and Technology Conference, pp. 1059-1063, 2000.

    [6] Haiyu, Q., Ganesan, S., Osterman, M. and Pecht, M., ”Accelerated Testing and Finite Element Analysis of PBGA Under Multiple Environmental Loadings”, 2004 International Conference on the Business of Electronic Product Reliability and Liability, pp. 99-106, 2004.

    [7] Lee, S.W.R., Lau, D., “Computational Model Validation with Experimental
    Data from Temperature Cycling Tests of PBGA Assemblies for the Analysis of Board Level Solder Joint Reliability,” 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2004, pp. 115-120, 2004 .

    [8] Tee, T. Y., Ng, H. S., Zhong, Z. W. and Zhou, J., ” Board-Level Solder Joint Reliability Analysis of Thermally Enhanced BGAs and LGAs”, IEEE Transactions on Advanced Packaging, Vol. 29(2), pp. 284-290, 2006.
    [9]Zhang, T., Rahman, S., Choi, K. K., Cho, K., Baker, P., Shakil, M., Heitkamp, M., ”A Global–Local Approach for Mechanical Deformation and Fatigue Durability of Microelectronic Packaging Systems”, Contributed by the Electrical and Electronic Packaging Division of ASME for Publication in the Journal of Electronic Packaging, Vol. 129(2), pp. 179-189, 2006.

    [10] Wang, T. H., Lee, C. C., Lai, Y. S., ” Thermal Characteristics and Thermomechanical Reliability of Board-Level Stacked-Die Packages Subjected to Coupled Power and Thermal Cycling Test”, IEEE Transactions on Components and Packaging Technologies, Vol. 31(2), pp. 495-502, 2008.

    [11] Zhou, B., Qiu, B.,” Effect of Voids on the Thermal Fatigue Reliability of PBGA Solder Joints through Submodel Technology”, 10th Electronics Packaging Technology Conference, Vol. 13, pp. 704-708, 2008.

    [12] 王功豪,”系統級封裝(SIP)之動態掉落測試與可靠度分析”, 義守大學機械與自動化工程學系碩士畢業論文,2008.

    [13] 陳正宗, 林信立, 邱垂鈺, 全湘偉, 黃志勇, 韓文仁, 秦無忝,有限元素分析與工程實例-MSC/NASTRAN 軟體應用, 北門出版社, 1996.

    [14] 賴育良, 林啟豪, 謝忠祐, ANSYS電腦輔助工程分析, 儒林出版社, 1998.

    [15] Anand, L., ” Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures”, Transactions of The ASME. Vol.104, pp.12-17, 1982.

    [16] Coffin, L. F., “Fatigue at High Temperature”, Fatigue at Elevated Temperature , ASTM STP 520, American Society for Testing and Materials, pp. 5-34, 1973.

    [17] Manson, S. S., “Thermal Stress and Low Cycle Fatigue”, McGraw-Hill, New York , 1966.

    [18] Darveaux, R., “Solder Joint Fatigue Life Model”, Proceedings of TMS Annual Meeting, pp.213-218, 1997.

    [19] 李輝煌,“田口方法品質設計的原理與實務”,高立圖書, 2000.

    [20] John H. Lau,”Ball Grid Array Technology”, McGraw-Hill,New York,1995.

    [21] ANSYS Menu, “Newton-Raphson Procedure”, ANSYS Theory Reference, Reversion 5.5, pp.15-28-40, 1998.

    [22] Tee, T. Y., Ng, H. S., Yap, D., Baraton, X. and Zhong, Z., “Board Level Solder Joint Reliability Modeling and Testing of TFBGA Packages for Telecommunication Applications“, Microelectronics Reliability, Vol.43, Is.7, pp.1117-1123, 2003.

    [23] 閻慶昌,”QFN構裝體錫球接點結構探討”, 成功大學工程科學系碩士畢業論文,2006.

    [24] JEDEC STANDARD, JESD22A104B, Temperature Cycling, July 2000.

    [25] Release 7.0 Documentation for ANSYS, “Element Library-Solid185”, Ansys Element Reference, 2003.

    無法下載圖示 校內:2016-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE