研究生: |
劉后鴻 Liu, Hou-Hung |
---|---|
論文名稱: |
應用田口方法對薄型細間距球閘陣列封裝進行參數最佳化之設計 The Study of Parameters Optimization for Thin Fin-pitch Ball Grid Array by Taguchi Method |
指導教授: |
潘文峰
Pan, Wen-Funj |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 應變能密度 、田口氏品質設計法 、可靠度 |
外文關鍵詞: | strain energy density, Taguchi quality design method, reliability |
相關次數: | 點閱:118 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因電子封裝的熱循環試驗需要花費大量的時間以及資源,所以利用分析模擬來代替傳統的實驗已經是非常普遍的做法。本文即針對細間距球閘陣列封裝(TFBGA)在溫度循環負載下,先利用ANSYS有限元素分析軟體進行分析相關應力及應變,接著求出關鍵錫球介面層厚度於一個溫度循環負載下所累積的黏塑性應變能密度平均值,之後採用Darveaux所提出的理論計算出該錫球的疲勞壽命作為封裝體的可靠度指標。
接著進行相關參數最佳化的設計,其中選定的參數因子有印刷電路板、基板、晶片、封膠的厚度及熱膨脹係數,而一次僅改變一個因子進行分析,以了解各因子水準的變動對於封裝體可靠度的影響。最後再利用田口氏品質設計法中田口式直交表的實驗數據,來找出最佳的參數組合,以期使封裝體的可靠度達到最大化的目的。
Due to the huge cost of the time and resource for thermal cyclic testing of the electronic package, the traditional experiment is commonly replaced by numerical simulation. This article focuses on Thin and Fine-pitch Ball Grid Array (TFBGA) in the temperature cycling load. Firstly, the finite element analysis software ANSYS is used to analyze the relative stress and strain. Next, the average accumulated viscoplastic strain-energy-density of the interface thickness in a temperature cycling load is calculated. Thereafter, the Darveaux theory is applied to determine the fatigue life of the key solder ball which is the reliability indicator of the package.
Next, the optimal design of the relative parameter factors is discussed. The selected factors include the printed circuit board, substrate, chip, thickness of the mold compound and thermal expansion coefficient. Only one magnitude of the factor changes during an analysis for understanding the influence the level of reliability of the package. Finally, by using the Taguchi orthogonal array experimental results of the Taguchi quality design method, the optimal design of the combination for the parameters is achieved. It is expected that the reliability of the package can be maximized.
[1]Lee, S. W., Lau, J. H., “Effect of Chip Dimension and Substrate Thickness on the Solder Joint Reliability of Plastic Ball Grid Array Packages,” Circuit World, Vol. 23(1), pp. 16-19, 1997.
[2] Mertol, A., “Optimization of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages for Robust Design,” IEEE Transactions on Components Packaging and Manufacturing Technology, Vol. 20, Issue 4, pp. 376-388, 1997 .
[3] Darveaux, R., ” Effect of Simulation Methodology on Solder Joint Crack Growth Correlation”, Journal of Electronic Packaging, Vol. 124(3), pp. 147-154, 2000.
[4] Tee, T. Y., Sivakumar, K., and Do-Bento-Vieira, A. A., ” Board Level Solder Joint Reliability Modeling of LFBGA Package”, IEEE Int’l Symp on Electronic Materials and Packaging, pp. 51-54, 2000.
[5] Guven, I., Kradinov, V., and Madenci, E., ”Finite Element Modeling of BGA Packages for Life Prediction”, Electronic Components and Technology Conference, pp. 1059-1063, 2000.
[6] Haiyu, Q., Ganesan, S., Osterman, M. and Pecht, M., ”Accelerated Testing and Finite Element Analysis of PBGA Under Multiple Environmental Loadings”, 2004 International Conference on the Business of Electronic Product Reliability and Liability, pp. 99-106, 2004.
[7] Lee, S.W.R., Lau, D., “Computational Model Validation with Experimental
Data from Temperature Cycling Tests of PBGA Assemblies for the Analysis of Board Level Solder Joint Reliability,” 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2004, pp. 115-120, 2004 .
[8] Tee, T. Y., Ng, H. S., Zhong, Z. W. and Zhou, J., ” Board-Level Solder Joint Reliability Analysis of Thermally Enhanced BGAs and LGAs”, IEEE Transactions on Advanced Packaging, Vol. 29(2), pp. 284-290, 2006.
[9]Zhang, T., Rahman, S., Choi, K. K., Cho, K., Baker, P., Shakil, M., Heitkamp, M., ”A Global–Local Approach for Mechanical Deformation and Fatigue Durability of Microelectronic Packaging Systems”, Contributed by the Electrical and Electronic Packaging Division of ASME for Publication in the Journal of Electronic Packaging, Vol. 129(2), pp. 179-189, 2006.
[10] Wang, T. H., Lee, C. C., Lai, Y. S., ” Thermal Characteristics and Thermomechanical Reliability of Board-Level Stacked-Die Packages Subjected to Coupled Power and Thermal Cycling Test”, IEEE Transactions on Components and Packaging Technologies, Vol. 31(2), pp. 495-502, 2008.
[11] Zhou, B., Qiu, B.,” Effect of Voids on the Thermal Fatigue Reliability of PBGA Solder Joints through Submodel Technology”, 10th Electronics Packaging Technology Conference, Vol. 13, pp. 704-708, 2008.
[12] 王功豪,”系統級封裝(SIP)之動態掉落測試與可靠度分析”, 義守大學機械與自動化工程學系碩士畢業論文,2008.
[13] 陳正宗, 林信立, 邱垂鈺, 全湘偉, 黃志勇, 韓文仁, 秦無忝,有限元素分析與工程實例-MSC/NASTRAN 軟體應用, 北門出版社, 1996.
[14] 賴育良, 林啟豪, 謝忠祐, ANSYS電腦輔助工程分析, 儒林出版社, 1998.
[15] Anand, L., ” Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures”, Transactions of The ASME. Vol.104, pp.12-17, 1982.
[16] Coffin, L. F., “Fatigue at High Temperature”, Fatigue at Elevated Temperature , ASTM STP 520, American Society for Testing and Materials, pp. 5-34, 1973.
[17] Manson, S. S., “Thermal Stress and Low Cycle Fatigue”, McGraw-Hill, New York , 1966.
[18] Darveaux, R., “Solder Joint Fatigue Life Model”, Proceedings of TMS Annual Meeting, pp.213-218, 1997.
[19] 李輝煌,“田口方法品質設計的原理與實務”,高立圖書, 2000.
[20] John H. Lau,”Ball Grid Array Technology”, McGraw-Hill,New York,1995.
[21] ANSYS Menu, “Newton-Raphson Procedure”, ANSYS Theory Reference, Reversion 5.5, pp.15-28-40, 1998.
[22] Tee, T. Y., Ng, H. S., Yap, D., Baraton, X. and Zhong, Z., “Board Level Solder Joint Reliability Modeling and Testing of TFBGA Packages for Telecommunication Applications“, Microelectronics Reliability, Vol.43, Is.7, pp.1117-1123, 2003.
[23] 閻慶昌,”QFN構裝體錫球接點結構探討”, 成功大學工程科學系碩士畢業論文,2006.
[24] JEDEC STANDARD, JESD22A104B, Temperature Cycling, July 2000.
[25] Release 7.0 Documentation for ANSYS, “Element Library-Solid185”, Ansys Element Reference, 2003.