簡易檢索 / 詳目顯示

研究生: 黃銘湧
Huang, Ming-Yung
論文名稱: 具不同烷基駢苯衍生物之有機薄膜電晶體特性研究
The Study of Organic Thin-film Transistor Fabrication by Use of Various Alkyl Perylene
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 91
中文關鍵詞: 有機薄膜電晶體駢苯衍生物
外文關鍵詞: Organic thin-film transistor, PTCDI, perylene derivaives
相關次數: 點閱:140下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用實驗室自行合成之不同烷基駢苯衍生物為薄膜電晶體半導體層材料,簡稱PTCDI-CnH2n+1,n=2~8,並經由核磁共振儀器,檢測其一維氫光譜,確定氫原子的數目,並由此推斷碳數是否符合實驗上所需要的各種碳數烷基駢苯衍生物。
    我們使用底部接觸式(Bottom contact)的元件結構,利用熱蒸鍍的方式沉積各種不同烷基駢苯衍生物作為半導體層,製作成薄膜電晶體且進一步分析電性及薄膜結構。一開始我們先使用PTCDI-C8H17作為薄膜電晶體半導體層材料,發現在基板溫度100 ℃,半導體膜厚700 Å具有最好的電特性。之後我們用同樣參數分別製做兩個碳到八個碳烷基駢苯衍生物的有機薄膜電晶體,發現載子遷移率隨著皆碳數增加而增加,另外基板未加溫的元件作,發現也與基板加溫的元件有相同趨勢。
    在x-ray繞射方面我們發現,x光繞射角隨著碳數增加而減少,配合對各個分子做分子長度運算,可以得到分子傾斜角。在AFM方面我們也發現不同碳數有不同的表面形態,晶粒隨著碳數大小而增大。

    In this study, alkyl perylene derivatives were synthesized in our laboratory and applied as the active layers in organic thin-film transistors (OTFTs). Generally, PTCDI-CnH2n+1 are the abbreviations of the alkyl perylene derivatives, where n ranges between 2 and 8. The number of hydrogen atoms of PTCDI-CnH2n+1 in alkyl group was identified from 1H-NMR spectrum of nuclear magnetic resonance spectroscopy. PTCDI films were deposited by thermal evaporation as the semiconductor layers of bottom-contact OTFTs. PTCDI-C8H17 was used to optimize the processing parameters of OTFTs. When the temperature of the substrate was held under 100 ℃ and the film thickness of PTCDI-C8H17 was 70 nm, the device had the best performance. Then, various PTCDI-CnH2n+1–based OTFTs were fabricated under the same parameters. The mobility and the grain size of OTFTs increase with increasing the number of carbon within alkyl group. Moreover, the same trend occurs in the devices in which the substrates were held under room temperature. From the x-ray diffraction analysis, the diffraction angle decreases with increasing an amount of carbon atoms. The oriented angles of PTCDI molecule and molecular length were obtained.

    摘要 I ABSTRACT II 致謝 III 表目錄 VIII 圖目錄 IX 第1章 簡介 1 1.1 有機半導體(ORGANIC SEMICONDUCTOR) 1 1.1.1 有機半導體簡介 1 1.1.2 有機半導體傳輸機制 3 1.2 有機薄膜電晶體(ORGANIC THIN-FILM TRANSISTORS;OTFTS) 4 1.2.1 有機薄膜電晶體概論 4 1.2.2 有機薄膜電晶體之元件構造 5 1.2.3 N型有機薄膜電晶體基本原理 5 1.2.4 有機薄膜電晶體的基本公式及特性 6 1.3 N型有機薄膜電晶體發展概況 9 1.4 研究目的 11 第2章 具不同碳數烷基之駢苯衍生物材料配製及分析 21 2.1 實驗原理 21 2.2 實驗方法 22 2.2.1 實驗儀器及藥品 22 2.2.2 駢苯衍生物配製流程 23 2.3 藥品檢測分析 25 2.3.1 核磁共振儀 25 2.3.2 核磁共振光譜分析 25 2.3.3 自行合成之不同碳數烷基駢苯衍生物核磁共振分析 26 第3章 不同碳數烷基駢苯衍生物之有機薄膜電晶體製程及量測 40 3.1 元件製程 40 3.1.1 基板清洗步驟 40 3.1.2 物理氣象沉積蒸鍍系統及製程 41 3.2 電性分析 42 3.3 薄膜特性分析 43 3.3.1 X-ray繞射量測系統 43 3.3.2 原子力顯微鏡量測系統 44 第4章 元件電性分析 52 4.1 不同基板溫度之薄膜電晶體電性分析 52 4.2 不同半導體厚度之薄膜電晶體電性分析 54 4.3 常溫成長下不同烷基之駢苯衍生物電性比較 56 4.4 基板加熱成長不同烷基之駢苯衍生物電性比較 58 第5章 不同碳數烷基駢苯衍生物薄膜分析 77 5.1 X-RAY繞射分析 77 5.1.1 X-ray晶格參數分析 77 5.1.2 分子傾斜角分析 77 5.2 AFM薄膜表面分析 79 第6章 結論與未來展望 86 參考文獻 88 附錄 A-1

    [1]. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. shirakawa, E. J. Louis, S. C. Gan, and A. G.. Macdiarmid,” Electrical Conductivity in Doped Polyacetylene”, Phys. Rev. Lett. 39, 1098(1997).
    [2]. F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastava, “All-Polymer Field-Effect Transistor Realized by Printing Techniques”, Science 265, 1684 (1994).
    [3]. Y. Sun, Y. Liu and D. Zhu, “Advanced in organic field-effect transistor”, J. Mater. Chem. 15, 53 (2005).
    [4]. D. Gamota, J. Zhang, P. Brazis, K. Kalyanasundaram, “Printed organic and molecular electronics,” Kluwer Academic Publishers 2004.
    [5]. 林士廷, “有機發光二極體光源之偏極化研究”,國立成功大學碩士論文(2004).
    [6]. F. Barbe and C. R. Westgate, “Surface state parameters of metal-free phthalocyanine single crystals”, J. Phys. Chem. Solids 31, 2679(1970).
    [7]. M. L. Petrova, L. D. Rozenshtein, and Fiz. Tverd. Tela(Sov. Phys.-Solid State), 12, 961 (1970).
    [8]. F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys. 54, 3255 (1983).
    [9]. H. Koezuka, A. Tsumura, and T. Ando, “Field-effect Transistors with polythiophene thin film”, Synth. Met. 18, 699 (1987)
    [10]. 顏偵翔, “十六氟銅苯二甲藍有機薄膜電晶體電傳輸性質之研究”,國立成功大學碩士論文(2007)
    [11]. R. Newman, C. D. Frisbie, D. A. da Silva Filho, Jean-Luc Bre´das, P. C. Ewbank and K. R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-channel Organic Semiconductors”, Chem. Mater. 16, 4436(2004)
    [12]. S. M. Sze, “Semiconductor Devices:Physics and Technology 2ndEdition” John Wiley & Sons, INC, New York, 2001.

    [13]. G. Guillaud, M. A. Sadoun, M. M. Simon and Marcel Bouvet, “Field-effect transistors based on intrinsic molecular semiconductor”, Chem. Phys. Lett. 167, 503-506(1990).
    [14]. C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronic”, Adv. Mater. 14, 99(2002)
    [15]. C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch and Christoph J. Brabec, “Solution-Processd Organic n-Type Thin-Film Transistors”, Adv. Mater. 15, 2084(2003)
    [16]. Lay-Lay Chua, Jana Zaumseil, Jui-Fen Chang, Eric C.-W. Ou, Peter K.-H. Ho, Henning Sirringhaus and Richard H. Friend, “General observation of n-type field effect behavior in organic semiconductor”, Nature 434, 194(2005).
    [17]. Byungwook Yoo, Taeho Jung, Debarshi Basu, and Ananth Dodabalapur, Brooks A. Jones, Antonio Facchetti, Michael R. Wasielewski, and Tobin J. Marks, High-mobility bottom-contact n-channel organic transistors and their use in complementary ring oscillators, Appl. Phys. Lett. 88, 082104(2006).
    [18]. J. Gundlach,K. P. Pernstich, G. Wilckens, M. Grüter, S. Haas, and B. Batlogg, “High mobility n-channel organic thin-film transistors and complementary inverters”, J. Appl. Phys. 98, 064502(2005)
    [19]. Dietrich R. T. Zahn, Thorsten U. Kampen, Henry Méndez, “Transport gap of organic semiconductors in organic modified Schottky contacts”, Appl. Surf. Sci. 212-213, 423(2003).
    [20]. J. R. Ostrick, A. Dodabalapur, L. Torsi, A. J. Lovinger, E. W. Kwock, T. M. Miller, M. Galvin, M. Berggren, and H. E. Katz, ”Conductivity-type anisotropic in molecular solids”, J. Appl. Phys. 81, 6804(1997)
    [21]. 劉彥怡,“駢苯衍生物的蕭特基能障研究”,國立台南大學碩 士論文
    [22]. P. A. Antunes, C. J. L. Constantino, R. F. Aroca, J. Duff, Langmuir and Langmuir-Blodgett Films of Perylene Tetracarboxylic Derivatives with Various Alkyl Chain length: Film Packing and Surfce-Enhanced Fluorescence Studies, Langmuir 17, 2958(2001).
    [23]. 郭家瑋,“有機薄膜電晶體之載子傳輸研究”,國立成功大學博士論文(2006)
    [24]. Kittel, “Introduction to Solid State Physics” 7th edition, Wiley, New
    York, pp. 70 (1996).
    [25]. T. Muck, V. Wagner, U. Bass, M. Leufgen, J. Geurts, L.W. Molenkamp, “In situ electrical characterization of DH4T field-effect transistors”, Synthetic Metals 146, 317(2004).
    [26]. R. Ruiz, A. papadimitratos, A. C. Mayer and G. G. Malliaras, “Thickness Dependence of Mobility in Pentacene Thin-Film Transistors”, Adv. Mater. 17, 1795(2005).
    [27]. Patrick R. L. Malenfant,Christos D. Dimitrakopoulos, Jeffrey D. Gelorme, Laura L. Kosbar, Teresita O. Graham, Alessandro Curioni and Wanda Andreoni, N-type organic thin-film transistor with high field-effect mobility based on a N,N8-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative, Appl. Phys. Lett. 80, 2517(2002).

    [28]. Jung Yong Kim, In Jae Chung , Young Chul Kim , Jae-Woong Yu, Mobility of electrons and holes in a liquid crystalline perylene diimide thin film with time of flight technique, Chem. Phys. Lett. 398, 367(2004).
    [29]. Reid J. Chesterfield, John C. McKeen, Christopher R. Newman, Paul C. Ewbank,Deme´trio A. da Silva Filho, Jean-Luc Bre´das, Larry L. Miller, Kent R. Mann, and C. Daniel Frisbie, “Organic Thin Film Transistors Based on N-Alkyl Perylene Diimides: Charge Transport Kinetics as a Function of Gate Voltage and Temperature”, J. Phys. Chem. B 108, pp 19281(2004).

    下載圖示 校內:2010-07-30公開
    校外:2010-07-30公開
    QR CODE