簡易檢索 / 詳目顯示

研究生: 謝栢源
Hsieh, Bar-Yuan
論文名稱: 主鏈含不同發光基團之共聚芴的合成、光電性質 與其在白光元件的應用
Copolyfluorenes Slightly Doped with Chromophores: Synthesis, Optoelectronic Properties and Applications in White-Light-Emitting Diodes
指導教授: 陳雲
Chen, Yun
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 186
中文關鍵詞: 有機發光二極體共軛高分子
外文關鍵詞: copolyfluorenepolymer, light-emitting diodes (PLED), conjugated polymer
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • White organic light-emitting diodes (WOLEDs) have received considerable attention due to their potential application in solid-state lighting and in backlight for liquid crystal displays. Among these devices, white-light OLEDs based on semiconducting polymers (PLEDs) are of particular interest for their facile solution processability that allows spin-coating and printing methods to be utilized for the fabrication of large-area-display devices. Through color mixing method, white-light-emitting devices could be readily obtained. In this dissertation, we devoted to design and prepare new copolyfluorenes to be applied in white-light-emitting devices. The copolyfluorenes were chemically doped (0.0025~50 mol%) with chromophores that emitted green or reddish orange light. The dominant parts of the copolyfluorenes were fluorene segments which acted as blue-emitting host. The guests (chromophores) were derived from seven new dibromo monomers, respectively, which are based on DCM, distyrylbenzene, phenothiazine, thiophene, and triphenylamine moieties. These monomers were incorporated into polyfluorene backbone through the palladium-catalyzed Suzuki coupling reaction. All new synthesized monomers and polymers were identified by 1H NMR, FT-IR, and elemental analysis (EA). Thermal properties of the polymers were determined using TGA and DSC. The optical (UV and PL), electrochemical (CV), and electroluminescent properties of these polymers were investigated in detail.
    In chapter 4, 5 and 7, four chromophores (DCM, R, PhT and ThT) were designed and their corresponding dibromo monomer synthesized. Their PL emissions located at 522~586 nm region. They were incorporated into polyfluorene to prepare copolyfluorenes with various contents of chromophores. The PLED devices exhibiting dichromatic white-light- emission were realized by using the copolyfluorenes as emitting layer. The EL devices of blends from PF and PFD0.5 (w/w = 4/1 or 9/1) exhibited near white light emission with the CIE coordinates being (0.33, 0.35) and (0.32, 0.34). The PFR devices showed a broad emission band, covering the entire visible region, with chromaticity coordinates being (0.36, 0.35) and (0.32, 0.30) for PFR1 and PFR2 devices, respectively. The maximum brightness and current efficiency of the PFR2 device were 3011 cd/m2 and 1.98 cd/A, respectively. Blending PFPhT2 with PF (w/w = 10/1), the dichromatic white-light emission was realized with the maximum brightness, maximum current efficiency, and CIE coordinates being 10600 cd/m2, 1.85 cd/A, and (0.31, 0.33), respectively.
    In chapter 6 and 8, three chromophores (MG, TP and TT) were designed and their corresponding dibromo monomers synthesized. Their PL emissions located at 492~536 nm. Copolyfluorenes with varied chromophore contents were prepared from the dibromo monomers. The PLED devices using the copolyfluorenes as emitting layer displayed both blue and green colors. When doping with red-emitting iridium complex, Ir(piq)2(acac), the trichromatic white-light emission was obtained. The trichromatic white EL device was fabricated by using the PFG2 as the host to blend with the iridium complex; the maximum brightness and CIE coordinate was 4120 cd/m2 and (0.31, 0.28), respectively. The other trichromatic white-light emission was realized through blending PFTT1 with polyfluorene and a red-emitting iridium complex, in which the maximum brightness and CIE coordinates were 6880 cd/m2 and (0.31, 0.33), respectively.

    Abstract I Acknowledgments III Contents V List of Schemes VIII List of Tables IX List of Figures X Chapter 1 General Introduction 1 Chapter 2 Review and Theoretical Background 5 2-1 Development Background of Electroluminescence 5 2-2 Electroluminescent Materials 10 2-2-1 Polymeric EL Materials 10 2-2-2 Conjugated polymers 11 2-2-3 Common Polymerization for Electroluminescent Polymers 13 2-3 The basic principle 18 2-3-1 Theory of fluorescence and phosphorescence 18 2-3-2 The Quantum Yield 21 2-3-3 The Emission of Intermolecular Interaction 21 2-3-4 Förster and Dexter Energy Transfer 25 2-4 The Electroluminescent Device 28 2-4-1 Single-layer devices 32 2-4-2 Multi-layer PLED devices 34 2-5 Human vision 35 2-5-1 Light receptors of the human eye 35 2-5-2 Color matching functions and chromaticity diagram 35 2-5-3 Additive color mixing 38 2-6 White-light-emitting devices 40 2-6-1 Multiple emissive layers 40 2-6-2 Multiple dopants emissive layer 42 2-7 Research motivation 48 Chapter 3 Experimental Section 51 3-1 Instruments for Chemical Synthesis 51 3-2 Measurements 51 3-3 Materials 55 3-4 Schemes of Monomers and Polymers 57 3-4-1 Synthesis of Monomers 57 3-4-2 Synthesis of Copolymers 64 Chapter 4 Synthesis, Photophysics and Electroluminescence of Copolyfluorenes Containing DCM Derivatives 87 4-1 Introduction 87 4-2 Experimental Section 89 4-3 Result and Discussion 90 4-3-1 Synthesis and Characterization 90 4-3-2 Photophysical Properties 92 4-3-3 Electrochemical Properties 97 4-3-4 Electroluminescent Properties 98 4-4 Conclusion 101 Chapter 5 Polyfluorenes Minimally Doped with 1,4-Bis(2-thienyl-2-cyanovinyl) benzene Chromophore: Their Synthesis, Characterization, and Application to White-Light-Emitting Materials 103 5-1 Introduction 103 5-2 Experimental Section 105 5-3 Results and Discussion 106 5-3-1 Synthesis and Characterization 106 5-3-2 Photophysical Properties 107 5-3-4 Electrochemical Properties 109 5-3-4 Electroluminescence Properties 111 5-4 Conclusion 115 Chapter 6 Synthesis, Characterization and Application of Light-Emitting Copolyfluorenes Slightly Doped with Distyrylbenzene Derivatives 117 6-1 Introduction 117 6-2 Experimental Section 119 6-3 Results and Discussion 120 6-3-1 Synthesis and Characterization 120 6-3-2 Photophysical Properties 121 6-3-3 Electrochemical Properties 123 6-3-4 Electroluminescent Properties 126 6-4 Conclusion 130 Chapter 7 Copolyfluorenes Containing Phenothiazine or Thiophene Derivatives: Synthesis, Characterization, and Application in White-Light-Emitting Diodes 131 7-1 Introduction 131 7-2 Experimental Section 133 7-3 Results and Discussion 135 7-3-1 Synthesis and Characterization 135 7-3-2 Photophysical Properties 136 7-3-3 Electrochemical Properties 139 7-3-4 Electroluminescent Properties 141 7-4 Conclusion 145 Chapter 8 Synthesis of Copolyfluorenes Containing Green Chromophores Based on Triphenylamine Unit and Their Application in Light-Emitting Diodes 147 8-1 Introduction 147 8-2 Experimental Section 149 8-3 Results and Discussion 151 8-3-1 Synthesis and Characterization 151 8-3-2 Photophysical Properties 153 8-3-3 Electrochemical Properties 157 8-3-4 Electroluminescent Properties 159 8-4 Conclusion 164 Chapter 9 Conclusion 165 References and Notes 169 Appendix Currculum Vitae 183 List of Publication 185 List of Schemes Scheme 2-1 Chemical structures of PMOT, PCHT, PTOPT and POPPPVC 42 Scheme 3-1 The synthetic procedures of monomer DCM-Br 57 Scheme 3-2 The synthesized procedures of monomer G-Br and R-Br 60 Scheme 3-3 The synthetic procedures of monomers PhT-Br and ThT-Br 61 Scheme 3-4 The synthetic procedures of monomers TP-Br and TT-Br 63 Scheme 3-5 The synthetic procedures of copolyfluorenes PFD 64 Scheme 3-6 The synthetic procedures of copolyfluorenes PFG and PFR 65 Scheme 3-7 The synthetic procedures of copolyfluorenes PFPhT and PFThT 65 Scheme 3-8 The synthetic procedures of copolyfluorenes PFTP and PFTT 66 Scheme 4-1 The structure of the dibromo monomer DCM-Br 88 Scheme 4-2 The synthetic procedure of the copolymer PFD 89 Scheme 5-1 The synthetic procedure of model compound (MR) and dibromo monomer (R-Br) 105 Scheme 5-2 The synthetic procedure of copolyfluorene PFR 106 Scheme 6-1 The synthetic procedure of model compound (MG), dibromo monomer (G-Br) and the copolymers (PFG) 119 Scheme 7-1 The structures of the dibromo monomers (TP-Br and TT-Br) 133 Scheme 7-2 The synthetic procedures of dibromo monomers (PhT-Br and ThT-Br) and copolymers (PFPhT and PFThT) 134 Scheme 8-1 The structures of the dibromo monomers TP-Br and TT-Br 149 Scheme 8-2 The synthetic procedures of dibromo monomers (PT-Br and TT-Br) and copolymers (PFTP and PFTT) 150 Scheme 9-1 Chemical structures of dibromo monomers (chromophore precursors) 165   List of Tables Table 1-1 The comparisons of all kinds of displays. 1 Table 1-2 The characterization of all kinds of displays. 1 Table 1-3 Comparison of OLEDs and LCDs. 3 Table 2-1 The comparison of EL polymers and small molecules. 9 Table 2-2 Colors and associated typical wavelength ranges. 36 Table 4-1 Polymerization Results and Characterization of the Copolymers. 91 Table 4-2 Photophysical Properties of the PFD. 93 Table 4-3 Electrochemical Potentials of the PFD. 97 Table 4-4 Electroluminescent Properties of the PFD and Blend Devices. 99 Table 5-1 Characterization Properties of the Copolymers. 107 Table 5-2 Photophysical Properties of the Copolymers. 109 Table 5-3 Electrochemical Potentials of the MR and Polymers. 110 Table 5-4 Electroluminescent Properties of the Devices. 113 Table 6-1 Characterization Properties of PF and PFG. 121 Table 6-2 Optical Properties of MG, PF and PFG. 122 Table 6-3 Electrochemical Potentials of the MG, PF and PFG. 124 Table 6-4 Electroluminescent Properties of the Devices. 127 Table 6-5 Electroluminescent Properties of the Blend Devices. 129 Table 7-1 Polymerization Results and Characterization of the Copolymers. 135 Table 7-2 Photophysical Properties of Monomers, PF, and Copolyfluorenes. 138 Table 7-3 Electrochemical Potentials of Monomers and Copolymers. 141 Table 7-4 Electroluminescent Properties of the Devices. 142 Table 7-5 Electroluminescent Properties of the Blend Devices. 144 Table 8-1 Polymerization Results and Characterization of the Polymers. 152 Table 8-2 Photophysical Properties of the Polymers. 152 Table 8-3 Electrochemical Potentials of the Polymers. 158 Table 8-4 Electroluminescent Properties of the LED Devices. 161 Table 8-5 Electroluminescent Properties of the Blend Devices. 163 Table 9-1 The Photophysical and Chemical Properties of the chromophores. 166 Table 9-2 The Electroluminescent Properties of the White-Light-Emitting Devices. 168   List of Figures Figure 1-1-1 The configuration of the OLEDs and LCDs 2 Figure 2-1-1 The relationship between the brightness and the current density in an OLED made of an anthracene single crystal 5 Figure 2-1-2 The structures of Alq3 and aromatic diamine 5 Figure 2-1-3 (a) The bilayer device of Alq3 (Kodak); (b) the single layer device of PPV (CDT) 6 Figure 2-1-4 The electroluminescent mechanism 7 Figure 2-1-5 Configurations of typical EL devices 8 Figure 2-2-1 Type of EL materials 10 Figure 2-2-2 Core structures of widely used emissive conjugated polymers 11 Figure 2-2-3 PPV derivatives with alkyl and alkoxy substituents 11 Figure 2-2-4 Examples of the PPP derivatives 12 Figure 2-2-5 Examples of PF homopolymer and its derivatives 12 Figure 2-2-6 PT homopolymer and regiochemistry of poly(alkylthiophene)s 13 Figure 2-2-7 The Friedel-Craft polymerization 13 Figure 2-2-8 The McCullough Methode of PTs 14 Figure 2-2-9 Heck reaction for the synthesis of PPVs 14 Figure 2-2-10 Suzuki coupling for the polymerization 15 Figure 2-2-11 Stille coupling reaction for the synthesis of copolymers 15 Figure 2-2-12 Synthesis of PPVs polymers through the Wittig reaction 15 Figure 2-2-13 Synthesis of PPV polymers through the Wittig-Horner condensation 16 Figure 2-2-14 Synthesis of CN-PPV via Knoevenagel condensation reaction 16 Figure 2-2-15 Synthesis of MEH-PPV through the Gilch route 16 Figure 2-2-16 Synthesis of PFs using Yamamoto coupling 17 Figure 2-3-1 The electron spins of the ground state and excited states 18 Figure 2-3-2 The energy-level diagram for a typical photoluminescent molecule 19 Figure 2-3-3 The spectral shift of TDBC (a) and rod-like arrangements (b) in aggregation 22 Figure 2-3-4 Exciton splitting in dimers for parallel and head-to-tail geometries of the constituent molecules 23 Figure 2-3-5 The mechanism of excimer (or exciplex) formation 24 Figure 2-3-6 Schematic of chain packing for the Monte Carlo global minimum in MEH-PPV and CN-PPV 24 Figure 2-3-7 Poly(fluorene) derivatives with large side groups (left) or spiro architecture (right) 25 Figure 2-3-8 An EL polymer was observed formation of electroplex 25 Figure 2-3-9 The reabsorption processes 26 Figure 2-3-10 The mechanism of Förster and Dexter energy transfer 26 Figure 2-3-11 The Förster type energy transfer 27 Figure 2-3-12 The excited energy of Alq3 transfer to DCM 28 Figure 2-3-13 The Dexter type energy transfer 28 Figure 2-4-1 Schematic illustration on the left depicting the general structure of a two-layer PLED device (left) and the energy band diagram (right). 29 Figure 2-4-2 Electronic properties of typical electrode metals 31 Figure 2-4-3 Energy level diagram of a two-layer PLED device under forward bias. 32 Figure 2-4-4 The EL device efficiency 33 Figure 2-4-5 Structure of multi-layer devices 34 Figure 2-5-1 (a) Cross section through human eyes. (b) Schematic view of retina including rod and cone light receptor. 35 Figure 2-5-2 Eye sensitivity function (left ordinate) and luminous efficacy, measured in lumens per Watt of optical power (right ordinate) 36 Figure 2-5-3 1931 CIE xyz color matching functions 37 Figure 2-5-4 The 1931 CIE chromaticity coordinates 38 Figure 2-5-5 Principle of color mixing illustrated with two or three light sources 39 Figure 2-6-1 The EL device with multiple emissive layers 40 Figure 2-6-2 EL spectrum and device structure of the trichromatic white light device (Kodak) 41 Figure 2-6-3 EL spectra of device III (n-hexane) and IV (toluene). Device configuration: ITO/PVK/C12O-PPP/Ca/Ag 41 Figure 2-6-4 WOLED devices with emissive layer containing multiple dopants 42 Figure 2-6-5 Chemical structures of the materials and the EL spectra of the white emitting devices 44 Figure 2-6-6 Molecular structures and the EL spectra of the device measured at various voltages 45 Figure 2-6-7 Chemical structure of PFO-DBTx-BTy and EL spectra of the PFO-R010-G018 device under different operating voltages 46 Figure 2-6-8 Chemical structure of PFIrRG and EL spectra of the PFIrR1G03 device under different operating voltages 47 Figure 2-7-1 Schematic the chemical structures of the copolyfluorenes 48 Figure 2-7-2 Illustrated the dichromatic or trichromatic white-light-emission 49 Figure 3-2-1 The DSC instrument 52 Figure 3-2-2 Four types of absorption transition 53 Figure 3-2-3 An overall view of CV experiment 54 Figure 3-2-4 Mechanism of tapping-mode AFM 55 Figure 3-4-1 The 1H NMR spectrum of compound 2 66 Figure 3-4-2 The 1H NMR spectrum of compound 4 67 Figure 3-4-3 The 1H NMR spectrum of compound 5 67 Figure 3-4-4 The 1H NMR spectrum of compound 6 68 Figure 3-4-5 The 1H NMR spectrum of compound 7 68 Figure 3-4-6 The 1H NMR spectrum of compound 8 69 Figure 3-4-7 The 1H NMR spectrum of compound 9 69 Figure 3-4-8 The 1H NMR spectrum of monomer DCM-Br 70 Figure 3-4-9 The 1H NMR spectrum of monomer G-Br 70 Figure 3-4-10 The 1H NMR spectrum of monomer R-Br 71 Figure 3-4-11 The 1H NMR spectrum of monomer 11 71 Figure 3-4-12 The 1H NMR spectrum of monomer PhT-Br 72 Figure 3-4-13 The 1H NMR spectrum of monomer ThT-Br 72 Figure 3-4-14 The 1H NMR spectrum of monomer 15 73 Figure 3-4-15 The 1H NMR spectrum of monomer TP-Br 73 Figure 3-4-16 The 1H NMR spectrum of monomer TT-Br 74 Figure 3-4-17 The 1H NMR spectrum of copolymer PFD0.5 74 Figure 3-4-18 The 1H NMR spectrum of copolymer PFD1 75 Figure 3-4-19 The 1H NMR spectrum of copolymer PFD5 75 Figure 3-4-20 The 1H NMR spectrum of copolymer PFD10 76 Figure 3-4-21 The 1H NMR spectrum of copolymer PFD25 76 Figure 3-4-22 The 1H NMR spectrum of copolymer PFD50 77 Figure 3-4-23 The 1H NMR spectrum of copolymer PFR1 77 Figure 3-4-24 The 1H NMR spectrum of copolymer PFR2 78 Figure 3-4-25 The 1H NMR spectrum of copolymer PFG1 78 Figure 3-4-26 The 1H NMR spectrum of copolymer PFG2 79 Figure 3-4-27 The 1H NMR spectrum of copolymer PFG3 79 Figure 3-4-28 The 1H NMR spectrum of copolymer PFG4 80 Figure 3-4-29 The 1H NMR spectrum of copolymer PFPhT1 80 Figure 3-4-30 The 1H NMR spectrum of copolymer PFPhT2 81 Figure 3-4-31 The 1H NMR spectrum of copolymer PFThT1 81 Figure 3-4-32 The 1H NMR spectrum of copolymer PFThT2 82 Figure 3-4-33 The 1H NMR spectrum of copolymer PFTP1 82 Figure 3-4-34 The 1H NMR spectrum of copolymer PFTP2 83 Figure 3-4-35 The 1H NMR spectrum of copolymer PFTP3 83 Figure 3-4-36 The 1H NMR spectrum of copolymer PFTT1 84 Figure 3-4-37 The 1H NMR spectrum of copolymer PFTT2 84 Figure 3-4-38 The 1H NMR spectrum of copolymer PFTT3 85 Figure 4-1 (a) absorption and (b) PL spectra of the PFD and the dibromo monomers in chloroform (1×10-5 M) 92 Figure 4-2 Photoluminescence of the PFD solutions (1×10-5 M in chloroform) under irradiation with 365 nm light 94 Figure 4-3 PL spectra of the polymers in the film state (excitation wavelength: 380 nm) 95 Figure 4-4 PL spectra of the blend film from PF and PFD25 (excited by 500 nm). The values are the molar percent of the chromophores in the blends 96 Figure 4-5 Cyclic voltammograms of DCM, PFD0.5, and PFD50 films coated on Pt electrode (scan rate: 100 mV/s) 96 Figure 4-6 EL spectra of the devices (ITO/PEDOT:PSS/polymer/Ca/Al) 98 Figure 4-7 Current density-voltage (●: PFD5, ○: Blend-20) and brightness-voltage (▲: PFD5, △: Blend-20) characteristics of the EL devices 99 Figure 4-8 Emission spectra of the EL devices from PFD0.5, Blend-20, Blend-10, and Blend-5. The values after the hyphen are the molar percent of PFD0.5 in the blends (PF + PFD0.5) 100 Figure 4-9 EL spectra of Blend-20 device under different operating voltages. The values in the parentheses are the 1931 CIE coordinates (x, y) of the emission light 101 Figure 5-1 Absorption and PL spectra of the polymers (excitation: 385 nm) and MR (excitation: 450 nm) in chloroform (1×10-5 M) 108 Figure 5-2 Absorption and PL spectra of the polymers (excitation: 385 nm) and MR (in PMMA and excitation: 450 nm) in the film state 109 Figure 5-3 Optimized geometries obtained from minimizing energy calculations for PFR 110 Figure 5-4 The EL spectra of the polymer devices [ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm)] 111 Figure 5-5 Current density-bias (●: PF, ▼: PFR1, ■: PFR2) and brightness-bias (○: PF, ▽: PFR1, □: PFR2) characteristics of the EL devices 112 Figure 5-6 The EL spectra of the blending devices [ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm)]. MR1: MR/PVK = 1/2; MR2: MR/PVK = 1/20; PFR: PFR/PVK = 1/1 114 Figure 6-1 Absorption and PL spectra of the PF (excitation: 385 nm) and MG dispersed in PMMA (blending ration: MG/PMMA = 1/14) in the film state; excitation: 350 nm 121 Figure 6-2 Absorption and PL spectra of PF and PFG (excitation: 385 nm): (a) in chloroform (1×10-5 M), (b) in the film state 122 Figure 6-3 Cyclic voltammograms of MG, PFG4, and PF films coated on glassy carbon working electrode (scan rate: 5 mV/s) 123 Figure 6-4 Energy band diagram of PF and green model MG 124 Figure 6-5 Optimized geometries and molecular orbital of linked fluorene and MG chromophore in PFG obtained from semi-empirical MNDO calculation 125 Figure 6-6 Emission spectra of the EL devices measured at ca. 1000 cd/m2; device structure: ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm) 126 Figure 6-7 (a) Brightness-voltage and (b) current density-voltage characteristics of the EL devices (●: PF, ▲: PFG1, ■: PFG2, ♦: PFG3, ▼:PFG4) 128 Figure 6-8 EL spectra of the WPLED devices measured at ca. 1000 cd/m2; device structure: ITO/PEDOT:PSS/emitting layer/Ca(50 nm)/Al(100 nm) 129 Figure 6-9 The CIE coordinates of the EL devices based on PFG doped with iridium complexes 130 Figure 7-1 TGA thermograms and DSC traces (inset) of the copolymers recorded at a heating rate of 20 oC /min 135 Figure 7-2 Absorption and PL spectra of (a) PF, PFPhT and PhT-Br; (b) PF, PFThT and ThT-Br in chloroform (1×10-5 M) 137 Figure 7-3 Normalized PL spectra of (a) PF, PFPhT and PhT-Br; (b) PF, PFThT and ThT-Br in the film state. The PhT-Br and ThT-Br were dispersed in PMMA (6.7 wt%) 139 Figure 7-4 Cyclic voltammograms of monomer (PhT-Br, ThT-Br) and copolymer films coated on glassy carbon electrode (scan rate: 20 mV/s) 140 Figure 7-5 Current density-bias (a) and brightness-voltage (b) characteristics of the EL devices 142 Figure 7-6 EL spectra of LED devices 143 Figure 7-7 EL spectra of the blend devices 143 Figure 8-1 Absorption (a) and PL spectra (b) of polymers (excitation: 385 nm) in chloroform (1×10-5 M) 153 Figure 8-2 PL spectra of (a) PFTP and (b) PFTT in film state (excitation: 385 nm) 154 Figure 8-3 PL spectra of PFTT3: (a) in chloroform; (b) in film state blending with PF (weight ratio = PFTT3/PF) 155 Figure 8-4 Cyclic voltammograms of the polymers (PF, PFTP3, PFTT3) films coated on glassy carbon electrode (scan rate: 20 mV/s) 157 Figure 8-5 EL spectra of the LED devices [ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm)]; obtained at maximum luminance for PFTP3 and PFTT3 devices or at ca. 1000 cd/m2 for other devices. 159 Figure 8-6 Current density-bias (a) and brightness-voltage (b) characteristics of the LED devices; device configuration: ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm). 160 Figure 8-7 EL spectra of the blend devices (at ca. 1000 cd/m2). Device configuration: ITO/PEDOT:PSS/emitting layer/Ca(50 nm)/Al(100 nm), compositions of the emitting layers are described in Table 8-5. 162

    1. Destriau, G. J. Chem. Phys. 1936, 33, 587.
    2. Ohnishi, H. Ann. Rev. Mater. Res. 1989, 19, 101.
    3. In Electronic display devices, Matsumoto, S., Ed. Wiley: New York, 1990; Chapter 5, p 180.
    4. Pope, M.; Kallmann, H.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
    5. Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    6. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
    7. Friend, R.; Burroughes, J.; Bradley, D. WO Patent 90/13 148, 1990.
    8. Friend, R.; Burroughes, J.; Bradley, D. US Patent 5 247 190, 1993.
    9. Wessling, R.; Zimmerman, R. US Patent 3 401 152, 1968.
    10. Wessling, R.; Zimmerman, R. US Patent 3 706 677, 1972.
    11. Wessling, R. J. Polym. Sci. Polym. Symp. 1985, 72, 55.
    12. Bradley, D. D. C. Synth. Met. 1993, 54, 401.
    13. Crawford, M. G.; Steranka, F. M. Encycl. of Appl. Phys. 1994, 8, 485.
    14. Hsieh, B. R.; Antoniades, H.; Abkowitz, M. A.; Stolka, M. Polymer Preprints 1993, 33, 128.
    15. Rikken, G. L. J. A.; Kessener, Y. A. R. R.; Braun, D.; Starring, E. G. J.; Demandt, R. Synth. Met. 1994, 67, 115.
    16. Ettedugi, E.; Razafitrimo, H.; Park, K. T.; Gao, Y.; Hsieh, B. R. Surface and Interface Analysis 1995, 23, 89.
    17. Dini, D. Chem. Mater. 2005, 17, 1933.
    18. Braun, D.; Heeger, A. Appl. Phys. Lett. 1991, 58, 1982.
    19. Miyashita, K.; Kaneko, M. Synth. Met. 1995, 68, 161.
    20. Gin, D. L.; Conticello, V. P. Trends Polym. Sci. 1996, 4, 217.
    21. Hamaguchi, M.; Sawada, H.; Kyokane, J.; Yoshino, K. Chem. Lett. 1996, 527.
    22. Bernius, M.; Inbasekaran, M.; Woo, E.; Wu, W. S.; Wujkowski, L. J. Mater. Sci. Mater. Electron. 2000, 11, 11.
    23. Inbasekaran, M.; E.Woo; Wu, W. S.; Bernius, M.; Wujkowski, L. Synth. Met. 2000, 111, 397.
    24. Bradley, D. D. C.; Greel, M.; Grice, A.; Tajbakhsh, A. R.; O'Brien, D. F.; Bleyer, A. Opt. Mater. 1998, 9, 1.
    25. Liu, B.; Yu, W. L.; Lai, Y.; Huang, W. Chem. Mater. 2001, 13, 1984.
    26. Grice, A. W.; Bradley, D. D. C.; Bernius, M. T.; Inbasekaran, M.; Wu, W. W. Appl. Phys. Lett. 1998, 73, 629.
    27. Leclerc, M.; Diaz, F. M.; Wegner, G. Macromol. Chem. 1989, 190, 3105.
    28. Mao, H.; Holdcroft, S. Macromolecules 1992, 25, 554.
    29. Mao, H.; Xu, B.; Holdcroft, S. Macromolecules 1993, 26, 1163.
    30. Andersson, M. R.; Selse, D.; Berggren, M.; Jarvinen, H.; Hjertberg, T.; Inganas, O.; Wennerstrom, O.; Osterholm, J. E. Macromolecules 1994, 27, 6503.
    31. McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L. J. Org. Chem. 1993, 58, 904.
    32. McCullough, R. D.; Williams, S. P.; Tristram-Nagle, S.; Jayaraman, M.; Ewbank, P. C.; Miller, L. Synth. Met. 1995, 69, 279.
    33. Chen, T. A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233.
    34. Kocacic, P.; Kyriakis, A. J. Am. Chem. Soc. 1963, 85, 454.
    35. Mccullough, R. D. Adv. Mater. 1998, 10, 93.
    36. Scherf, U. Top. Curr. Chem. 1999, 201, 164.
    37. Hadziioannou, G.; Hutten, v. P. F., Semiconducting Polmers. Wiely: Germany, 2000; chapter 16.
    38. Suzuki, A. Pure Appl. Chem. 1991, 63, 419.
    39. Chen, S.-H.; Chen, Y. Macromolecules 2005, 38, 53.
    40. Lögdlund, M.; Salaneck, W. R.; Meyers, F.; Brédas, J. L.; Arbuckle, G. A.; Friend, R. H.; Holmes, A. B.; Froyer, G. Macromolecules 1993, 26, 3815.
    41. Stille, J. K. Amgew. Chem. Int. Ed. 1986, 25, 508.
    42. Lawrence, N. J., The Wittig Reactions and Related Methods in Preparation of Alkenes: A Practical Approach. Oxford University: New York, 1996.
    43. Laue, T.; Plagens, A., Named Organic Reactions. 2nd Ed.; John Wiley& Sons: New York, 1999.
    44. Conticello, V. P.; Gin, D. L.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 9708.
    45. Gilch, H. G.; Wheelwright, W. L. J. Polym. Sci. 1966 A-1, 1337.
    46. Hsieh, B. R.; Yu, Y.; Lee, H. K.; Vanlaeken, A. C. Macromolecules 1997, 30, 8094.
    47. Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477.
    48. Yamamoto, T.; Morita, A.; Muyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.-H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K. Macromolecules 1992, 25, 1214.
    49. Klaerner, G.; Miller, R. D. Macromolecules 1998, 31, 2007.
    50. Kreyenschimdt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099.
    51. Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M.; Rothberg, L. J.; Chandross, E. A. Science 1995, 117, 11976.
    52. Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of Instrumental Analysis. In Saunders Golden Sunburst Series, 5th ed.; 1998; chapter 15.
    53. Cornil, J.; Beljonne, D.; Santos, D. A.; Bredas, J. L. Synth. Met. 1996, 76, 101.
    54. Woo, H. S.; Lhost, O.; Graham, S. C.; Bre´das, J. L.; Schenk, R.; Mullen, K. Synth. Met. 1993, 59, 13.
    55. Tian, B.; Zerbi, G.; Schenk, R.; Mullen, K. J. Chem. Phys. 1991, 95, 3191.
    56. Lee, Y. Z.; Chen, X.; Chen, M.-C.; Chen, S.-A.; Hsu, J.-H.; Fann, W. Appl. Phys. Lett. 2001, 79, 308.
    57. May, V.; Kuhn, O., Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH: 2003.
    58. Pope, M.; Swenberg, C. E., Electronic Processes in Organic Crystals. Clarendon Press: Oxford, 1982.
    59. Knox, R. S. J. Phys. Chem. 1994, 98, 7270.
    60. Yassar, A.; Horowitz, G.; Valat, P.; Wintgens, V.; Hymene, M.; Deloffre, F.; Srivastava, P.; Lang, P.; Garnier, F. J. Phys. Chem. 1995, 99, 9155.
    61. Dresselhaus, M. S.; Dresselhaus, G. Adv. Phys 1981, 30, 139.
    62. Conwell, E. M.; Perlstein, J.; Shaik, S. Phys. Rev. B 1996, 54, 2308.
    63. Zeng, G.; Yu, W.-L.; Chua, S.-J.; Huang, W. Macromolecules 2002, 35, 6907.
    64. Paik, K. L.; Baek, N. S.; Kim, H. K.; Lee, J.-H.; Lee, L. Macromolecules 2002, 35, 6782.
    65. Kafafi, Z. H., Organic Electroluminescence. US Naval Research Lab: Washington, DC, USA, 2005.
    66. May, V.; Kuhn, O., Charge and Energy Transfer Dynamics in Molecular Systems. 2nd Ed.; Wiley-VCH: 2003; chapter 8.
    67. Chen, S.-H., The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Consisting of Hole- and Electron-Transporting Segments. Doctoral Dissertation: National Cheng Kung University, 2006.
    68. Closs, G. L.; Johnson, M. D.; Miller, J. R.; Piotrowiak, P. J. Am. Chem. Soc. 1989, 111, 3751.
    69. Hamberg, I.; Granqvist, C. J. Appl. Phys. 1986, 60, R123.
    70. Kobayashi, H.; Ishida, T.; Nakato, Y.; Tsubomura, H. J. Appl. Phys. 1991, 69, 1736.
    71. Tahar, R.; Ban, T.; Ohya, Y.; Takahashi, Y. J. Appl. Phys. 1998, 83, 2631.
    72. Osada, T.; Kugler, T.; Broms, P.; Salaneck, W. Synth. Met. 1998, 96, 77.
    73. Kim, J.; Granstrom, M.; Friend, R.; Johansson, N.; Salaneck, W.; Daik, R.; Feast, W. J. Appl. Phys. 1998, 84, 6859.
    74. Milliron, D.; I.Hill; Shen, C.; Kahn, A.; Schwartz, J. J. Appl. Phys. 2000, 87, 572.
    75. Lyon, L. Mol. Cryst. Liq. Cryst. 1989, 171, 53.
    76. Bradley, D. Synth. Met. 1993, 54, 401.
    77. Yang, Y.; Heeger, A. Appl. Phys. Lett. 1994, 64, 1245.
    78. Michaelson, H., Handbook of Chemistry and Physics. 58th Ed.; CRC Press: Boca Raton, FL 1977-1978.
    79. Michaelson, H.; IBM. J. Res. Dev 1978, 22, 72.
    80. Fowler, R.; Nordheim, L. Proc. R. Soc. London A 1928, 119, 173.
    81. Parker, I. J. Appl. Phys. 1994, 75, 1656.
    82. Rikken, G.; Braun, D.; Staring, E.; Demandt, R. Appl. Phys. Lett. 1994, 65, 219.
    83. Halls, J.; Cornil, J.; Santos, D. D.; Silbey, R.; Hwang, D.; Holmes, A.; Bredas, J.; Friend, R. Phys. Rev. B 1999, 60, 5721.
    84. Gruner, J.; Remmers, M.; Neher, D. Adv. Mater. 1997, 9, 964.
    85. Soos, Z.; Galvao, D.; Etemad, S. Adv. Mater. 1994, 6, 280.
    86. Lemmer, U.; Heun, S.; Mahrt, R.; Scherf, U.; Hopmeier, M.; Siegner, U.; Gobel, E.; Müllen, K.; Bässler, H. Chem. Phys. Lett. 1995, 240, 373.
    87. Romero, D.; Schaer, M.; Zuppiroli, L.; Cesar, B.; Francois, B. Appl. Phys. Lett. 1995, 67, 1659.
    88. Scott, J.; Kaufman, J.; Brock, P.; Dipieto, R.; Salem, J.; Goitia, J. J. Appl. Phys. 1996, 79, 2745.
    89. Schubert, E. F., Human Vision. In Light-Emitting Diodes, 1st ed.; Cambridge University Press: 2004; chapter 11.
    90. Kido, J. Bulletin of Electrochemistry 1994, 10, 1.
    91. Liu, Z. G.; Nazare, H. Synth. Met. 2000, 111, 47.
    92. Jordan, R. H.; Dodabalapur, A.; Strukelj, M.; Miller, T. M. Appl. Phys. Lett. 1996, 68, 1192.
    93. D'Andrade, B. W.; Thompson, M. E.; Forrest, S. R. Adv. Mater. 2002, 14, 147.
    94. Winters, D.; Ricks, M.; Hatwar, T. Proceedings of SID'05, p.36, May 22-27, 2005, Bostom, USA.
    95. Chao, C.-I.; Chen, S.-A. Appl. Phys. Lett. 1998, 73, 426.
    96. Granstrom, M.; Inganas, O. Appl. Phys. Lett. 1996, 68, 147.
    97. Lee, Y.-Z.; Chen, X.; Chen, M.-C.; Chen, S.-A.; Hsu, J.-H.; Fann, W. Appl. Phys. Lett. 2001, 79, 308.
    98. Paik, K. L.; Baek, N. S.; Kim, H. K.; Lee, J.-H.; Lee, Y. Macromolecules 2002, 35, 6782.
    99. Su, H.-J.; Wu, F.-I.; Shu, C.-F. Macromolecules 2004, 37, 7197.
    100. Pai, D. M.; Yanus, J. F.; Stolka, M. J. Phys. Chem. 1984, 88, 4714.
    101. Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. Appl. Phys. Lett. 1994, 64, 815.
    102. Hu, B.; Karasz, F. E. J. Appl. Phys. 2003, 93, 1995.
    103. Tanaka, I.; Suzuki, M.; Tokito, S. Jpn. J. Appl. Phys. 2003, 42, 2737.
    104. Kim, T. H.; Lee, H. K.; Park, O. O.; Chin, B. D.; Lee, S. H.; Kim, J. K. Adv. Funct. Mater. 2006, 16, 611.
    105. Gong, X.; Moses, D.; Heeger, A. J.; Xiao, S. J. Phys. Chem. B 2004, 108, 8601.
    106. Chen, S.-A.; Lu, H.-H.; Huang, C.-W. Adv. Polym. Sci. 2008, 212, 49.
    107. Chi-Chung, H.; Chih-Yuan, K.; Show-An, C. Appl. Phys. Lett. 2008, 93, 123303.
    108. Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2002, 35, 6094.
    109. Hou, Q.; Xu, Y.; Yang, W.; Yuan, M.; Peng, J.; Cao, Y. J. Mater. Chem. 2002, 12, 2887.
    110. Tu, G.; Zhou, Q.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. Appl. Phys. Lett. 2004, 85, 2172.
    111. Lee, S. K.; Jung, B.-J.; Ahn, T.; Jung, Y. K.; Lee, J.-I.; Kang, I.-N.; Lee, J.; Park, J.-H.; Shim, H. K. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 3380.
    112. Lee, S. K.; Hwang, D.-H.; Jung, B.-J.; Cho, N. S.; Lee, J.; Lee, J.-D. Adv. Funct. Mater. 2005, 15, 1647.
    113. Luo, J.; Li, X. Z.; Hou, Q.; Peng, J. B.; Yang, W.; Cao, Y. Adv. Mater. 2007, 19, 1113.
    114. Chuang, C. Y.; Shih, P. I.; Chien, C. H.; Wu, F. I.; Shu, C. F. Macromolecules 2007, 40, 247.
    115. Liu, J.; Xie, Z. Y.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Jing, X. B.; Wang, F. S. Adv. Mater. 2007, 19, 531.
    116. Chen, X.; Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng, H.-E.; Chen, S.-A. J. Am. Chem. Soc. 2003, 125, 636.
    117. Jiang, J. X.; Xu, Y. H.; Yang, W.; Guan, R.; Liu, Z. Q.; Zhen, H. Y.; Cao, Y. Adv. Mater. 2006, 18, 1769.
    118. Zhen, H.; Xu, W.; Yang, W.; Chen, Q.; Xu, Y.; Jiang, J.; Peng, J.; Cao, Y. Macromol. Rapid Commun. 2006, 27, 2095.
    119. Lee, P. I.; Hsu, L. C.; Lee, J. F. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 464.
    120. Xu, Y. H.; Guan, R.; Jiang, J. X.; Yang, W.; Zhen, H. Y.; Peng, J. B.; Cao, Y. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 453.
    121. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J Appl Phys 1989, 65, 3610.
    122. Gosser, D. K., Cyclic Voltammetry Simulation and Analysis of Reaction Mechanism. 1st Ed.; VCH: New York, 1993.
    123. Woods, L. L. J. Am. Chem. Soc. 1958, 80, 1440.
    124. Cho, N. S.; Hwang, D. H.; Lee, J. I.; Jung, B. J.; Shim, H. K. Macromolecules 2002, 35, 1224.
    125. Zhan, X.; Liu, Y.; Wu, X.; Wang, S.; Zhu, D. Macromolecules 2002, 35, 2529.
    126. Cho, N. S.; Park, J.-H.; Shim, H.-K. Current Applied Physics 2006, 6, 686.
    127. Peng, Q.; Lu, Z. Y.; Huang, Y.; Xie, M. G.; Han, S. H.; Peng, J. B.; Cao, Y. Macromolecules 2004, 37, 260.
    128. Cho, N. S.; Park, J. H.; Lee, S. K.; Lee, J.; Shim, H. K.; Park, M. J.; Hwang, D. H.; Jung, B. J. Macromolecules 2006, 39, 177.
    129. Fang, Q.; Yamamoto, T. Macromolecules 2004, 37, 5894.
    130. Lee, H. J.; Sohn, J.; Hwang, J.; Park, S. Y.; Choi, H.; Cha, M. Chem. Mater. 2004, 16, 456.
    131. Li, H.; Hu, Y.; Zhang, Y.; Ma, D.; Wang, L.; Jing, X.; Wang, F. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 3947.
    132. Cho, H. J.; Hwang, D. H.; Lee, J. I.; Jung, Y. K.; Park, J. H.; Lee, J.; Lee, S. K.; Shim, H. K. Chem. Mater. 2006, 18, 3780.
    133. Yang, Y.; Heeger, A. J. Nature 1994, 372, 344.
    134. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A. D.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
    135. Zhang, X.; Shetty, A. S.; Jenekhe, S. A. Macromolecules 1999, 32, 7422.
    136. Zhang, X.; Jenekhe, S. A. Macromolecules 2000, 33, 2069.
    137. Liao, L.; Pang, Y.; Ding, L.; Karasz, F. E. Macromolecules 2001, 34, 7300.
    138. Jenekhe, S. A.; Lu, L.; Alam, M. M. Macromolecules 2001, 34, 7315.
    139. Zhang, X.; Kale, D. M.; Jenekhe, S. A. Macromolecules 2002, 35, 382.
    140. Zhu, Y.; Alam, M. M.; Jenekhe, S. A. Macromolecules 2003, 36, 8958.
    141. Yang, J.; Jiang, C.; Zhang, Y.; Yang, R.; Yang, W.; Hou, Q.; Cao, Y. Macromolecules 2004, 37, 1211.
    142. Lu, J.; Tao, Y.; D'Iorio, M.; Li, Y.; Ding, J.; Day, M. Macromolecules 2004, 37, 2442.
    143. Tonzola, C. J.; Alam, M. M.; Bean, B. A.; Jenekhe, S. A. Macromolecules 2004, 37, 3554.
    144. Wisnieff, R. Nature 1998, 394, 225.
    145. Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359.
    146. Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2003, 107, 1749.
    147. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378.
    148. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498.
    149. Samson, A. J.; Shujian, Y. Appl. Phys. Lett. 2000, 77, 2635.
    150. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15.
    151. Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 2001, 78, 841.
    152. Grem, G.; Leditzky, G.; Ullrich, B.; Leising, G. Adv. Mater. 1992, 4, 36.
    153. Roncali, J. Chem. Rev. 1992, 92, 711.
    154. Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
    155. Grell, M.; Knoll, W.; Lupo, D.; Meisel, A.; Miteva, T.; Neher, D.; Nothofer, H.-G.; Scherf, U.; Yasuda, A. Adv. Mater. 1999, 11, 671.
    156. Babel, A.; Jenekhe, S. A. Macromolecules 2003, 36, 7759.
    157. Zeng, G.; Yu, W. L.; Chua, S. J.; Huang, W. Macromolecules 2002, 35, 6907.
    158. List, E. J. W.; Guentner, R.; Freitas, P. S. d.; Scherf, U. Adv. Mater. 2002, 14, 374.
    159. Lupton, J. M.; Craig, M. R.; Meijer, E. W. Appl. Phys. Lett. 2002, 80, 4489.
    160. Romaner, L.; Pogantsch, A.; Freitas, P. S. d.; Scherf, U.; Gaal, M.; Zojer, E.; List, E. J. W. Adv. Func. Mater. 2003, 13, 597.
    161. Zhao, W.; Cao, T.; White, J. Adv. Funct. Mater. 2004, 14, 783.
    162. Klärner, G.; Davey, M. H.; Chen, W.-D.; Scott, J. C.; Miller, R. D. Adv. Mater. 1998, 10, 993.
    163. Xia, C.; Advincula, R. C. Macromolecules 2001, 34, 5854.
    164. Cheon, C. H.; Joo, S. H.; Kim, K.; Jin, J. I.; Shin, H. W.; Kim, Y. R. Macromolecules 2005, 38, 6336.
    165. Huang, B.; Li, J.; Jiang, Z.; Qin, J.; Yu, G.; Liu, Y. Macromolecules 2005, 38, 6915.
    166. Vak, D.; Jo, J.; Ghim, J.; Chun, C.; Lim, B.; Heeger, A. J.; Kim, D. Y. Macromolecules 2006, 39, 6433.
    167. Hung, M. C.; Liao, J. L.; Chen, S. A.; Chen, S. H.; Su, A. C. J. Am. Chem. Soc. 2005, 127, 14576.
    168. Miteva, T.; Meisel, A.; Knoll, W.; Nothofer, H. G.; Scherf, U.; Müller, D. C.; Meerholz, K.; Yasuda, A.; Neher, D. Adv. Mater. 2001, 13, 565.
    169. Oda, M.; Nothofer, H.-G.; Lieser, G.; Scherf, U.; Meskers, S. C. J.; Neher, D. Adv. Mater. 2000, 12, 362.
    170. Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
    171. Wu, F. I.; Reddy, D. S.; Shu, C. F.; Liu, M. S.; Jen, A. K. Y. Chem. Mater. 2003, 15, 269.
    172. Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 1565.
    173. Kong, X.; Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2003, 36, 8992.
    174. Hou, Q.; Zhou, Q.; Zhang, Y.; Yang, W.; Yang, R.; Cao, Y. Macromolecules 2004, 37, 6299.
    175. Wu, W.; Inbasekaran, M.; Hudack, M.; Welsh, D.; Yu, W.; Cheng, Y.; Wang, C.; Kram, S.; Tacey, M.; Bernius, M.; Fletcher, R.; Kiszka, K.; Munger, S.; O'Brien, J. Microelectron. J. 2004, 35, 343.
    176. Rusling, J. F.; Suib, S. L. Adv. Mater. 1994, 6, 922.
    177. Liu, Y.; Liu, M. S.; Jen, A. K.-Y. Acta Polym. 1999, 50, 105.
    178. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
    179. Tokito, S.; Tanaka, H.; Noda, K.; Okada, A.; Taga, Y. Appl. Phys. Lett. 1997, 70, 1929.
    180. Jung, B.-J.; Yoon, C. B.; Shim, H. K.; Do, L. M.; Zyung, T. Adv. Funct. Mater. 2001, 11, 430.
    181. Kim, J. H.; Lee, H. Chem. Mater. 2002, 14, 2270.
    182. Kulkarni, A. P.; Zhu, Y.; Jenekhe, S. A. Macromolecules 2005, 38, 1553.
    183. Ding, L.; Bo, Z.; Chu, Q.; Li, J.; Dai, L.; Pang, Y.; Karasz, F. E.; Durstock, M. F. Macromol. Chem. Phys. 2006, 207, 870.
    184. Kuo, C.-H.; Cheng, W.-K.; Lin, K.-R.; Leung, M.-K.; Hsieh, K.-H. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4504.
    185. Buchgraber, C.; Pogantsch, A.; Kappaun, S.; Spanring, J.; Kern, W. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4317.
    186. In Chapter 4 of this dissertation.
    187. Liu, J.; Zhou, Q. G.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Ma, D. G.; Jing, X. B.; Wang, F. S. Adv. Mater. 2005, 17, 2974.
    188. Tsami, A.; Yang, X.-H.; Galbrecht, F.; Farrell, T.; Li, H.; Adamczyk, S.; Heiderhoff, R.; Balk, L. J.; Neher, D.; Holder, E. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4773.
    189. Yuan, M.-C.; Shih, P.-I.; Chien, C.-H.; Shu, C.-F. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2925.
    190. Lee, J.; Lee, J.-I.; Park, M.-J.; Jung, Y. K.; Cho, N. S.; Cho, H. J.; Hwang, D.-H.; Lee, S.-K.; Park, J.-H.; Hye, J. H.; Chu, Y.; Shim, H.-K. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 1236.
    191. Lee, J.; Cho, H.-J.; Cho, N. S.; Hwang, D.-H.; Kang, J.-M.; Lim, E.; Lee, J.-I.; Shim, H.-K. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 2943.
    192. Cho, N. S.; Hwang, D. H.; Jung, B. J.; Lim, E.; Lee, J.; Shim, H. K. Macromolecules 2004, 37, 5265.
    193. Wu, T.-Y.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 4570.
    194. Ranger, M.; Rondeau, D.; Leclerc, M. Macromolecules 1997, 30, 7686.
    195. Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453.
    196. Tsai, L.-R.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 5541.
    197. Kido, J.; Kimura, M.; Nagai, K. Science 1995, 267, 1332.
    198. Wu, C.-C.; Sturm, J. C.; Register, R. A.; Tian, J.; Dana, E. P.; Thompson, M. E. IEEE Trans. Electron Devices 1997, 44, 1269.
    199. Mori, T.; Tsuge, H.; Mizutani, T. J. Phys. D: Appl. Phys. 1999, 32, L65.
    200. Lane, P. A.; Palilis, L. C.; O'Brien, D. F.; Giebeler, C.; Cadby, A. J.; Lidzey, D. G.; Campbell, A. J.; Blau, W.; Bradley, D. D. C. Phys. Rev. B 2001, 63, 235206.
    201. Gong, X.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Funct. Mater. 2003, 13, 439.
    202. Leclerc, M. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2869.
    203. Sun, J.; Cheng, J.-G.; Zhu, W.-Q.; Ren, S.-J.; Zhong, H.-L.; Zeng, D.-L.; Du, J.-P.; Xu, E.-J.; Liu, Y.-C.; Fang, Q. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5616.
    204. Yang, R.; Tian, R.; Yan, J.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Macromolecules 2005, 38, 244.
    205. Tsai, L.-R.; Li, C.-W.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5945.
    206. Jung, Y. K.; Kim, H.; Park, J.-H.; Lee, J.; Lee, S. K.; Lee, Y. S.; Shim, H.-K. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 3573.
    207. Chen, X.; Liao, J. L.; Liang, Y.; Ahmed, M. O.; Tseng, H. E.; Chen, S. A. J. Am. Chem. Soc. 2003, 125, 636.
    208. Sandee, A. J.; Williams, C. K.; Evans, N. R.; Davies, J. E.; Boothby, C. E.; Kohler, A.; Friend, R. H.; Holmes, A. B. J. Am. Chem. Soc. 2004, 126, 7041.
    209. Takagi, K.; Kakiuchi, H.; Yuki, Y.; Suzuki, M. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4786.
    210. Bonifácio, V. D. B.; Morgado, J.; Scherf, U. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 2878.
    211. Mei, C.; Tu, G.; Zhou, Q.; Cheng, Y.; Xie, Z.; Ma, D.; Geng, Y.; Wang, L. Polymer 2006, 47, 4976.
    212. Liu, J.; Chen, L.; Shao, S.; Xie, Z.; Cheng, Y.; Geng, Y.; Wang, L.; Jing, X.; Wang, F. J. Mater. Chem. 2008, 18, 319.
    213. Liu, J.; Shao, S. Y.; Chen, L.; Xie, Z. Y.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Jing, X. B.; Wang, F. S. Adv. Mater. 2007, 19, 1859.
    214. Oelkrug, D.; Tompert, A.; Gierschner, J.; Egelhaaf, H. J.; Hanack, M.; Hohloch, M.; Steinhuber, E. J. Phys. Chem. B 1998, 102, 1902.
    215. Tsai, C.-J.; Yeh, K.-M.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 211.
    216. In Chapter 5 of this dissertation.
    217. Chen, Y.; Hwang, S.-W.; Yu, Y.-H. Polymer 2003, 44, 3827.
    218. Li, C. L.; Su, Y. J.; Tao, Y. T.; Chou, P. T.; Chien, C. H.; Cheng, C.-C.; Liu, R. S. Adv. Funct. Mater. 2005, 15, 387.
    219. Prasad, P. N.; Williams, D. J., Introduction to Nonlinear Effects in Monomers and Polymers. John Wiley & Sons: New York, 1991.
    220. Ego, C.; Marsitzky, D.; Becker, S.; Zhang, J.; Grimsdale, A. C.; Mullen, K.; MacKenzie, J. D.; Silva, C.; Friend, R. H. J. Am. Chem. Soc. 2003, 125, 437.
    221. Hwang, D. H.; Kim, S. K.; Park, M. J.; Lee, J. H.; Koo, B. W.; Kang, I. N.; Kim, S. H.; Zyung, T. Chem. Mater. 2004, 16, 1298.
    222. Tang, R.; Tan, Z.; Li, Y.; Xi, F. Chem. Mater. 2006, 18, 1053.
    223. Chien, C.-H.; Shih, P.-I.; Shu, C.-F. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2938.
    224. Lee, S. K.; Ahn, T.; Cho, N. S.; Lee, J.-I.; Jung, Y. K.; Lee, J.; Shim, H. K. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 1199.
    225. Lai, R. Y.; Kong, X.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2003, 125, 12631.
    226. Higuchi, A.; Inada, H.; Kobata, T.; Shirota, Y. Adv. Mater. 1991, 3, 549.
    227. In Chapter 6 of this dissertation.
    228. Shirota, Y. J. Mater. Chem. 2000, 10, 1.
    229. Li, X. C.; Liu, Y.; Liu, M. S.; Jen, A. K. Y. Chem. Mater. 1999, 11, 1568.
    230. Donat-Bouillud, A.; Levesque, I.; Tao, Y.; D'Iorio, M.; Beaupre, S.; Blondin, P.; Ranger, M.; Bouchard, J.; Leclerc, M. Chem. Mater. 2000, 12, 1931.
    231. Schulz, G. L.; Chen, X.; Chen, S. A.; Holdcroft, S. Macromolecules 2006, 39, 9157.
    232. Morgado, J.; Cacialli, F.; Friend, R. H.; Iqbal, R.; Yahioglu, G.; Milgrom, L. R.; Moratti, S. C.; Holmes, A. B. Chem. Phys. Lett. 2000, 325, 552.
    233. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
    234. Beljonne, D.; Cornil, J.; Friend, R. H.; Janssen, R. A. J.; Bredas, J. L. J. Am. Chem. Soc. 1996, 118, 6453.
    235. Inganas, O.; Granlund, T.; Theander, M.; Berggren, M.; Andersson, M. R.; Ruseekas, A.; Sundstrom, V. Opt. Mater. 1998, 9, 104.
    236. Pei, J.; Yu, W. L.; Huang, W.; Heeger, A. J. Macromolecules 2000, 33, 2462.
    237. Berggren, M.; Gustafsson, G.; Inganas, O.; Andersson, M. R.; Wennerstrom, O.; Hjertberg, T. Adv. Mater. 1994, 6, 488.

    下載圖示 校內:2012-01-20公開
    校外:2014-01-20公開
    QR CODE