| 研究生: |
黃巧君 Huang, Chiao-Chun |
|---|---|
| 論文名稱: |
探討異染色質在調控抗氧化壓力中的角色 Heterochromatin promotes oxidative stress resistance |
| 指導教授: |
顏賢章
Yan, Shian-Jang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 活性氧 (ROS) 、異染色質蛋白1 (HP1) 、抗氧化壓力 (oxidative stress resistance) |
| 外文關鍵詞: | reactive oxidative species (ROS), heterochromatin protein 1 (HP1), oxidative stress resistance |
| 相關次數: | 點閱:181 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
抗氧化機制可以維持活性氧 (ROS) 的動態平衡,當活性氧數量超越抗氧化機制所能負荷的程度時,將對細胞造成傷害。先前文獻指出,提升抗氧化基因的表達量,可以有效抑制過量活性氧所造成的氧化壓力,進而達到保護模式生物與延長壽命之效果。有趣的是,提升調控異染色質形成的異染色質蛋白質1 (Heterochromatin protein 1, HP1) 的表現量,在果蠅中亦觀察到具有促進長壽的效果。然而,其相關分子機制並不完全清楚。因此本研究利用表現不同程度異染色質蛋白質1的果蠅當作模式生物,並製造過量的氧化壓力,藉由計算果蠅的存活率,來探討異染色質是否透過表觀遺傳學調控抗氧化機制。實驗結果顯示,提高異染色質蛋白質1表現量的果蠅,對於氧化壓力具有較佳的抵抗能力;相反地,降低異染色質蛋白質1表現量的果蠅,面臨氧化壓力時較容易死亡。除此之外,亦觀察到提高異染色質蛋白質1表現量,可以降低內源性活性氧的量。更進一步,我們比對果蠅模式生物的基因資料庫,找出七個抗氧化基因能受到異染色質蛋白質1的調控,其中已知磷酸核糖異構酶 (Rpi) 參與氧化壓力與壽命的調控。綜合以上結果,我們推測:異染色質調控抗氧化相關基因的表達量來扮演保護的角色,以維持活性氧的動態恆定。而未來仍需進一度探討,異染色質蛋白質1促進抗氧化壓力是否能藉由表觀遺傳直接地調控抗氧化相關基因。因此,本研究能提供對於老化相關疾病預防和治療的新方向,希望可以促進人類健康與長壽。
Cellular damage occurs when excessive reactive oxidative species (ROS) overwhelms the cell’s antioxidant defense mechanisms that normally help maintain ROS oxidative homeostasis. Previous studies demonstrated that overexpression of antioxidant genes, suppressing excessive ROS levels, is protective and extends the lifespan in model organisms. Interestingly, the formation of heterochromatin, a compacted form of chromatin, is mediated by heterochromatin protein 1 (HP1) and epigenetically enhances longevity in Drosophila. However, the molecular and cellular mechanisms by which heterochromatin promotes longevity remain elusive. In this study, we determined whether heterochromatin regulates the antioxidant defense system via epigenetic mechanisms in Drosophila. We examined the survival of animals with different levels of HP1 under oxidative stress. We found that animals with increased levels of heterochromatin confer resistance to oxidative stress, and conversely, animals with reduced levels of heterochromatin are more susceptible to ROS-induced lethality. Moreover, we also observed that increased heterochromatin levels decreases endogenous ROS levels. By analyzing antioxidant gene expression microarray and qRT-PCR studies, we verified seven putative HP1-regulated antioxidant-related genes, including ribose-5-phosphate isomerase (rpi), which has been shown to regulate oxidative resistance and lifespan in Drosophila. Taken together, these results suggest that heterochromatin regulates antioxidant-related genes and plays a protective role in maintaining ROS homeostasis in response to oxidative stress. Further studies are necessary to determine whether HP1 promotes oxidative resistance by reducing ROS levels through direct epigenetic modulation of these antioxidant-related genes. This study may provide new preventive/therapeutic treatments for age-dependent diseases and pave the way for improvement in human health- and life-span.
[1] Harman, D.,"Free radical theory of aging", Mutation Research, 275, 257-266 (1992).
[2] Baylin, S. B. and Schuebel, K. E.,"Genomic biology: the epigenomic era opens", Nature, 448, 548-549 (2007).
[3] Berger, S. L., Kouzarides, T., Shiekhattar, R. and Shilatifard, A.,"An operational definition of epigenetics", Genes Dev, 23, 781-783 (2009).
[4] Borrás, C., Sastre, J., García-Sala, D., Lloret, A., Pallardó, F. V. and Viña, J.,"Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males", Free Radical Biology and Medicine, 34, 546-552 (2003).
[5] Cencioni, C., Spallotta, F., Martelli, F., Valente, S., Mai, A., Zeiher, A. M. and Gaetano, C.,"Oxidative stress and epigenetic regulation in ageing and age-related diseases", International Journal of Molecular Sciences, 14, 17643-17663 (2013).
[6] Chua, S. S., Wang, Y., DeMayo, F. J., O'Malley, B. W. and Tsai, S. Y.,"A novel RU486 inducible system for the activation and repression of genes", Advanced Drug Delivery Reviews, 30, 23-31 (1998).
[7] Cocheme, H. M. and Murphy, M. P.,"Complex I is the major site of mitochondrial superoxide production by paraquat", J Biol Chem., 283, 1786-98 (2008).
[8] D'Autréaux, B. and Toledano, M. B.,"ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis", Nature Reviews Molecular Cell Biology, 8, 813-824 (2007).
[9] Edgecomb, R. S., Harth, C. E. and Schneiderman, A. M.,"Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state", J Exp Biol., 197, 215-235 (1994).
[10] Eissenberg, J. C., Morris, G. D., Reuter, G. and Hartnett, T.,"The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation", Genetics, 131, 345-352 (1992).
[11] Finkel, T. and Holbrook, N. J.,"Oxidants, oxidative stress and the biology of ageing", Nature, 408, 239-247 (2000).
[12] Franco, R., Schoneveld, O., Georgakilas, A. G. and Panayiotidis, M. I.,"Oxidative stress, DNA methylation and carcinogenesis", Cancer Lett., 266, 6-11 (2008).
[13] Greer, E. L., Maures, T. J., Hauswirth, A. G., Green, E. M., Leeman, D. S., Maro, G. S., Han, S., Banko, M. R., Gozani, O. and Brunet, A.,"Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans", Nature, 466, 383-387 (2010).
[14] Harman, D.,"Free radical theory of aging", Mutation Research/DNAging, 275, 257-266 (1992).
[15] Holmstrom, K. M. and Finkel, T.,"Cellular mechanisms and physiological consequences of redox-dependent signalling", Nat Rev Mol Cell Biol., 15, 411-421 (2014).
[16] Jung, K. A. and Kwak, M. K.,"The Nrf2 system as a potential target for the development of indirect antioxidants", Molecules, 15, 7266-7291 (2010).
[17] Kaspar, J. W., Niture, S. K. and Jaiswal, A. K.,"Nrf2: INrf2 (Keap1) signaling in oxidative stress", Free Radical Biology and Medicine, 47, 1304-1309 (2009).
[18] López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. and Kroemer, G.,"The hallmarks of aging", Cell, 153, 1194-1217 (2013).
[19] Larson, K., Yan, S.-J., Tsurumi, A., Liu, J., Zhou, J., Gaur, K., Guo, D., Eickbush, T. H. and Li, W. X.,"Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis", PLoS Genet, 8, e1002473 (2012).
[20] Lee, D. H., Li, Y., Shin, D.H., Yi, S. A., Bang, S.Y., Park, E. K., Han, J.W. and Kwon, S. H.,"DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila", Biochemical and Biophysical Research Communications, 434, 820-828 (2013).
[21] Lin, Y.-J., Seroude, L. and Benzer, S.,"Extended life-span and stress resistance in the Drosophila mutant methuselah", Science, 282, 943-946 (1998).
[22] Liu, L.P., Ni, J.Q., Shi, Y.D., Oakeley, E. J. and Sun, F.L.,"Sex-specific role of Drosophila melanogaster HP1 in regulating chromatin structure and gene transcription", Nature genetics, 37, 1361-1366 (2005).
[23] Melov, S., Ravenscroft, J., Malik, S., Gill, M. S., Walker, D. W., Clayton, P. E., Wallace, D. C., Malfroy, B., Doctrow, S. R. and Lithgow, G. J.,"Extension of life-span with superoxide dismutase/catalase mimetics", Science, 289, 1567-1569 (2000).
[24] Miller, Justine D., Ganat, Yosif M., Kishinevsky, S., Bowman, Robert L., Liu, B., Tu, Edmund Y., Mandal, P. K., Vera, E., Shim, J.-w., Kriks, S., Taldone, T., Fusaki, N., Tomishima, Mark J., Krainc, D., Milner, Teresa A., Rossi, Derrick J. and Studer, L.,"Human iPSC-based modeling of late-onset disease via progerin-induced aging", Cell Stem Cell, 13, 691-705 (2013).
[25] Mirisola, Mario G. and Longo, Valter D.,"A radical signal activates the epigenetic regulation of longevity", Cell Metabolism, 17, 812-813 (2013).
[26] Owusu-Ansah, E., Yavari, A. and Banerjee, U.,"A protocol for in vivo detection of reactive oxygen species", (2008).
[27] Partridge, L. and Gems, D.,"Benchmarks for ageing studies", Nature, 450, 165-167 (2007).
[28] Pegoraro, G., Kubben, N., Wickert, U., Gohler, H., Hoffmann, K. and Misteli, T.,"Ageing-related chromatin defects through loss of the NURD complex", Nat Cell Biol, 11, 1261-1267 (2009).
[29] Poirier, L., Shane, A., Zheng, J. and Seroude, L.,"Characterization of the Drosophila gene-switch system in aging studies: a cautionary tale", Aging Cell, 7, 758-70 (2008).
[30] Proteggente, A. R., England, T. G., Rehman, A., Rice-Evans, C. A. and Halliwell, B.,"Gender differences in steady-state levels of oxidative damage to DNA in healthy individuals", Free Radic Res, 36, 157-62 (2002).
[31] Rahman, M. M., Sykiotis, G. P., Nishimura, M., Bodmer, R. and Bohmann, D.,"Declining signal dependence of Nrf2‐MafS‐regulated gene expression correlates with aging phenotypes", Aging Cell, 12, 554-562 (2013).
[32] Riganti, C., Gazzano, E., Polimeni, M., Aldieri, E. and Ghigo, D.,"The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate", Free Radic Biol Med., 53, 421-36 (2012).
[33] Schieber, M. and Chandel, Navdeep S.,"ROS function in redox signaling and oxidative stress", Current Biology, 24, R453-R462 (2014).
[34] Schriner, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., Coskun, P. E., Ladiges, W., Wolf, N. and Van Remmen, H.,"Extension of murine life span by overexpression of catalase targeted to mitochondria", Science, 308, 1909-1911 (2005).
[35] Schwaiger, M., Kohler, H., Oakeley, E. J., Stadler, M. B. and Schübeler, D.,"Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome", Genome research, 20, 771-780 (2010).
[36] Wamelink, M. M., Struys, E. A. and Jakobs, C.,"The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review", J Inherit Metab Dis., 31, 703-17 (2008).
[37] Wang, C. T., Chen, Y. C., Wang, Y. Y., Huang, M. H., Yen, T. L., Li, H., Liang, C. J., Sang, T. K., Ciou, S. C., Yuh, C. H., Wang, C. Y., Brummel, T. J. and Wang, H. D.,"Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila", Aging Cell, 11, 93-103 (2012).
[38] Zhang, W., Li, J., Suzuki, K., Qu, J., Wang, P., Zhou, J., Liu, X., Ren, R., Xu, X., Ocampo, A., Yuan, T., Yang, J., Li, Y., Shi, L., Guan, D., Pan, H., Duan, S., Ding, Z., Li, M., Yi, F., Bai, R., Wang, Y., Chen, C., Yang, F., Li, X., Wang, Z., Aizawa, E., Goebl, A., Soligalla, R. D., Reddy, P., Esteban, C. R., Tang, F., Liu, G.-H. and Belmonte, J. C. I.,"A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging", Science, 348, 1160-1163 (2015).
[39] Ziech, D., Franco, R., Pappa, A. and Panayiotidis, M. I.,"Reactive oxygen species (ROS)––induced genetic and epigenetic alterations in human carcinogenesis", Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 711, 167-173 (2011).
校內:2025-12-31公開