| 研究生: |
郭東雄 Kuo, Tung-Hsiung |
|---|---|
| 論文名稱: |
轉化型煉油廠中石油供應鏈規劃與排程之整合策略 An Integrated Planning and Scheduling Strategy for the Petroleum Supply Chains in Conversion Refineries |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 混合整數線性模式 、石油供應鏈 、轉化型煉油廠 、隨機規劃 、輕芳香烴族 、排程 、規劃 |
| 外文關鍵詞: | conversion refinery, planning, stochastic programming model, light aromatics, mixed-integer linear programming model, petroleum suppy chain, scheduling |
| 相關次數: | 點閱:96 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的範圍涉及典型石油公司轉化型煉油廠內的石油供應網路,在此網路中原油被轉化成乙烯、丙烯、丁二烯、液化石油氣、苯、甲苯、二甲苯、汽油、煤油、柴油與其他副產品。一般而言,完整的石油供應鏈至少應包含有13種不同類型的生產單元,即常壓蒸餾工場、真空蒸餾工場、石油焦工場、流體化床觸媒裂解工場、輕油裂解工場、丁二烯萃取工場、芳香烴萃取工場、加氫脫硫工場、重組工場、二甲苯分離工場、二甲苯吸附工場、二甲苯異構化工場與轉烷化工場。傳統的煉油廠營運計畫的訂定,會按照固定程序進行,即首先須提出生產計畫,然後再依照該計畫去安排相關的排程。但因為部份排程細節通常不會在規劃過程中被考慮進去,所以無法保證可以制定出可行的排程,為了解決此一問題,本研究提出一個整合規劃與排程決策的混合整數線性模式來最大化供應鏈效益。求解此模式可得到最適當的原油採購量與時機、石化產品的生產時程與運送量,亦可決定出最適當的原料來源(供應商)、最經濟的採購量、最佳的採購時間與運送時程等。
除了上述整合型數學規劃策略以外,在本研究中也發展出輕芳香烴族供應鏈的生產規劃模式與在供需不確定的情況下石油供應鏈最適生產規劃之隨機性模式,輕芳香烴族供應鏈是生產四個輕芳香烴族產品(苯、甲苯、對二甲苯與鄰二甲苯)的供應鏈,求解此模式不僅是能夠在已知供應與需求的情形下,決定出最經濟的生產策略,同時也能在多生產線的供應鏈中選擇出最佳生產單元的組合。最後,我們也考慮石油供應鏈的原料(石油)、中間油料(重石油腦、輕石油腦、混合二甲苯)和民生消費產品(液化石油氣、柴油、煤油與汽油)的供應不確定與前述民生消費產品需求也不確定的影響下,利用隨機規劃技巧來決定出供應鏈在各規劃時期內在每一可能情境實際發生時可採用的最適當的生產與運輸策略。
The scope of this study is concerned with the petroleum supply network operated by a typical oil company, in which the crude oil is consumed to produce ethylene, propylene, liquefied petroleum gas, butadiene, benzene, toluene, xylene, gasoline, kerosene, diesel and other by-products. These petrochemical products are usually manufactured with a cluster of strategically-located conversion refineries. A complete petroleum supply chain consists of at least 13 different types of production units, i.e., the atmospheric distillation units, the vacuum distillation units, the cokers, the fluid catalystic cracking units, the naphtha crackers, the butadiene extraction units, the hydrotreaters, the aromatics extraction units, the reforming units, the xylene fractionation units, the parex units, the xylene isomar units, and the tatoray units. Traditionally, the production plan of an industrial supply chain is created first and a compatible schedule is then identified accordingly. Since the detailed scheduling constraints are often ignored in the planning model, there is no guarantee that an operable schedule can be obtained with this hierarchical approach. To address this issue, a single mixed-integer linear program (MILP) has been formulated in this study to coordinate various planning and scheduling decisions simultaneously for optimizing the supply chain performance. Solving this MILP model yields the proper procurement scheme for crude oils, the schedules for producing various petrochemical products, and the corresponding logistics. The appropriate sources (suppliers) of raw materials, the economic order quantities, the best purchasing intervals, and also the transportation schedules can be identified accordingly. In particular, the optimal production schedule of olefins, aromatics and other petrochemical products over the specified planning horizon is configured by selecting throughput, operating conditions and technology option for each unit in the chain, by maintaining the desired inventory level for each process material, by securing enough feedstock, and by delivering appropriate amounts of products to the customers.
On the basis of the above-mentioned basic MILP model, two modified versions have been developed for specific applications. A deterministic planning model has been constructed for the supply chains of light aromatic compounds, i.e., benzene, toluene, o-xylene and p-xylene. From the optimal solutions, it is clear that the proposed approach can be used not only to generate the most economic production plan on the basis of given supply and demand rates, but also select the best process configuration in a multi-train supply chain. On the other hand, a stochastic programming (SP) model has also been formulated according to the basic model to synthesize the optimal planning strategy of petroleum supply chain under uncertain supplies and demands. The uncertain parameters in this model include: the supply rates of raw materials (i.e., petroleum), intermediate oils (i.e., heavy naphthas, light naphthas and mixed xylenes) and consumer products (i.e., liquefied petroleum gas, diesel, kerosene and gasoline), and the demand rates of the aforementioned consumer products. By solving the SP model, the best production and transportation strategies can be determined for every possible scenario.
Aprile, D.; Garavelli, A. C.; Giannoccaro, I. Operations Planning and Flexibility in a Supply Chain. Production Planning & Control, 16, 1, January 2005, 21-31, 2005.
Ashayeri, J.; Selen, W. A Planning and Scheduling Model for Onsertion in Printed Circuit Board Assembly, European Journal of Operational Research, 183, 909-925, 2007.
Beamon, B. M. Supply Chain Design and Analysis: Models and Methods. International Journal on Production Economics, 55, 281-294, 1998.
Bopp, A. E.; Kannan, V. R.; Palocsay, S.W.; Stevens, S. P. An Optimization Model for Planning Natural Gas Purchases, Transportation, Storage and Deliverability. Omega, 24 (5), 511-522, 1996.
Bonner, M. RPMS (Refinery and Petrochemical Modeling System): A System Description. Houston, NY: Bonner and Moore Management Science, 1979.
Bechtel. PIMS (Process Industry Modeling System) User’s manual. Version 6.0, Houston, TX: Bechtel Corp, 1993.
Biegler, L. T.; Grossmann, I. E.; Westerberg, A. W. Systematic Methods of Chemical Process Design. Prentice-Hall, U.S.A., 1999.
Bonfill, A.; Bagajewicz, M. J.; Espunả, A.; Puigjaner, L. Risk Management in the Scheduling of Batch Plants under Uncertain Market Demand. Ind. Eng. Chem. Res., 43, 741-750, 2004.
Bryson, A. E., Jr.; Ho, Y. C. Applied Optimal Control: Optimization, Estimation, and Control, Hemisphere Publishing Corporation, New York, 1975.
Carvalho, M. C. A.; Pinto, J. M. An MILP Model and Solution Technique for the Planning of Infrastructure in Offshore Oilfields. Journal of Petroleum Science and Engineering, 51, 97-110, 2006.
Chen, K.; Ji, P. A Mixed Integer Programming Model for Advanced Planning and Scheduling (APS). European Journal of Operational Research, 181, 515-522, 2007.
Chopra, S.; Meindl, P. Supply Chain Management-Strategy, Planning and Operation; 2nd ed., Pearson Education, Inc., Upper Saddle River, New Jersey, 2004.
Dodin, B.; Elimam, A. A. Integration of Equipment Planning and Project Scheduling, European Journal of Operational Research, 184, 962-980, 2008.
Dogan, M. E.; Grossmann, I. E. Design of Multi-echelon Supply Chain Networks under Demand Uncertainty. Industrial and Engineering Chemistry Research, 45, 299-315, 2006.
Franck, H. G.; Stadelhofer, J. W. Industrial Aromatic Chemistry: Raw Materials, Processes, Products. Berlin: Spring-Verlag, 1988.
Floudas, C.A.; Lin, X. Continuous-time versus Discrete-time Approaches for Scheduling of Chemical Processes: A Review. Computers & Chemical Engineering, 28, 2109-2129, 2004.
Floudas, C.A.; Lin, X. Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications. Annals of Operations Research, 139, 1, 131-162, 2005.
Gary, J. H.; Handwerk, G. E. Petroleum Refining Technology and Economics. 4th ed., Marcel Dekker, 2001.
Göthe-Lundgren, M.; Lundren, J. T.; Persson, J. A. An Optimization Model for Refinery Production Scheduling. Intl. J. Prod. Eco., 78, 255-270, 2002.
Guillen, G. F. D.; Mele, M. J.; Bagajewicz, A. E.; Puigjaner, L. Multiobjective Supply Chain Design under Uncertainty. Chemical Engineering Science, 60, 1535-1553, 2005.
Guldmann, J. M.; Wang, F. Optimizing the Natural Gas Supply Mix of Local Distribution Utilities. European Journal of Operational Research, 112, 598-612, 1999.
Gupta, A.; Maranas, C. D. A Two-Stage Modeling and Solution Framework for Multisite Midterm Planning under Demand Uncertainty. Industrial and Engineering Chemistry Research, 39, 3799-3813, 2000.
Gupta, A.; Maranas, C. D. Managing Demand Uncertainty in Supply Chain Planning. Computers & Chemical Engineering, 27, 1219-1227, 2003.
Hsieh, S.; Chiang, C. C. Manufacturing-to-sale Planning Model for Fuel oil Production. Advanced Manufacturing Technology, 18, 303-311, 2001.
Ho, C. H.; Yu, M. L. Application of Linear Programming Model in an Aromatic Plant, Proceeding PSE Asia, Taipei, Taiwan, pp.513-518, 2002.
Ho, J. C.; Chang, Y. L. An Integrated MRP and JIT Framework. Computers & Industrial Engineering, 41, 173-185, 2001.
Iyer, R. R.; Grossmann, I. E.; Vasantharajan, S.; Cullick, A. S. Optimal Planning and Scheduling of Offshore Oil Field Infrastructure Investment and Operations. Industrial and Engineering Chemistry Research, 37, 1380-1397, 1998.
Jackson, J. R.; Grossmann, I. E. Temporal Decomposition Scheme for Nonlinear Multisite Production Planning and Distribution Models. Industrial and Engineering Chemical Research, 42, 3045-3055, 2003.
Janak, S. L.; Lin, X.; Floudas, C.A. A New Robust Optimization Approach for Scheduling under Uncertainty: II. Uncertainty with Known Probability Distribution. Computers & Chemical Engineering, 31, 171-195, 2007.
Jia, Z.; Ierapetritou, M. Efficient Short-term Scheduling of Refinery Operations Based on a Continuous Time Formulation. Computers & Chemical Engineering, 28, 1001-1019, 2004.
Jones, D. S. J.; Pujadõ, P. R. Handbook of Petroleum Processing. Springer: Netherland, 2006
Julka, N.; Srinivasan, R., ; Karimi, I. Agent-based Supply Chain Management-1: Framework. Computers & Chemical Engineering, 26, 1755-1769, 2002.
Julka, N.; Karimi, I.,; Srinivasan, R. Agent-based Supply Chain Management*/2: A Refinery Application. Computers & Chemical Engineering, 26, 1771-1781, 2002.
Lee, H.; Pinto, J. M.; Grossmann, I. E.; Park, S. Mixed-integer Linear Programming Model for Refinery Short-term Scheduling of Crude Oil Unloading with Inventory Management. Industrial and Engineering Chemistry Research, 35, 1630-1641, 1996.
Li, W.; Hui, C. W.; Li, A. Integrating CDU, FCC and Product Blending Models into Refinery Planning. Computers & Chemical Engineering, 29, 2010-2028, 2005.
Li, Zukui; Ierapetritou, M. Process Scheduling under Uncertainty: Review and Challenges. Computers & Chemical Engineering, 32, 715-727, 2008.
Lin, X.; Janak, S. L.; Floudas, C. A. A New Robust Optimization Approach for Scheduling under Uncertainty: I. Bounded Uncertainty. Computers & Chemical Engineering, 28, 1069-1085, 2004.
Liu, M. L.; Sahinidis, N. V. Optimization in Process Planning under Uncertainty. Industrial & Engineering Chemistry Research, 35, 4154-4165, 1996.
Liu, M. L.; Sahinidis, N. V. Process Planning in a Fuzzy Environment. European Journal of Operational Research, 100, 142-169, 1997.
Más, R.; Pinto, J. M. A Mixed-integer Optimization Strategy for Oil Supply in Distribution Complexes. Optimization and Engineering, 4, 23-64, 2003.
Magalhães, M.V.; Shah, N. Crude Oil Scheduling. In I. E. Grossmann & C. M. McDonald (Eds.), Proceedings of Fourth Iinternational Conference on Foundations of Computer-aided Process Operations, Coral Springs, CAChE, 323-326, 2003.
Maples, R. E. Petroleum Refinery Process Economics. Tulsa, Okla.:Penn Well Corp., 2000.
McKay, D. L.; Dale, G. H.; Tabler, D. C. Para-xylene via Fractional Crystallization. Chem. Eng. Progr., 62, Nr. 11, 104, 1966.
Méndez, C. A.; Grossmann, I. E.; Harjunkoski I.; Kaboré, P. A Simultaneous Optimization Approach for Off-line Blending and Scheduling of Oil-refinery Operations. Computers & Chemical Engineering, 30, 614-634, 2006.
Meyers, R. A. Handbook of Petroleum Refining Processes. Mexico: Impresora Donneco, 1986.
Micheletto, S. R.; Carvalho, M. C.A.; Pinto, J. M. Operational Optimization of the Utility System of an Oil Refinery. Computers & Chemical Engineering, 32, 170-185, 2008.
MirHassani, S. A. An Operational Planning Model for Petroleum Products Logistics under Uncertainty. Applied Mathematics and Computation, 196, 744-751, 2008
Moro, L. F. L.; Zanin, A. C.; Pinto, J. M. A Planning Model for Refinery Diesel Production. Computers & Chemical Engineering, 22, S1039-S1042, 1998.
Neiro, S. M. S.; Pinto, J. M. A General Modeling Framework for the Operational Planning of Petroleum Supply Chain. Computers & Chemical Engineering, 28, 871-896, 2004.
Nishi, T; Konishi, M.; Ago, M. A Distributed Decision Making System for Integrated Optimization of Production Scheduling and Distribution for Aluminum Production Line. Computers & Chemical Engineering, 31, 1205-1221, 2007.
Paolucci, M.; Sacile, R.; Boccalatte, A. Allocating Crude Oil Supply to Port and Refinery Tanks: A Simulation-Based Decision Support System. Decision Support Systems, 33, 39-54, 2002.
Persson, J. A.; Göthe-Lundgren, M. Shipment Planning at Oil Refineries Using Column Generation and Valid Inequalities. European Journal of Operational Research, 163, 631-652, 2005.
Perry, R. H.; Green, D. W.; Maloney, J. O. Perry’s Chemical engineerings’ handbook. 7th ed., New York: McGraw-Hill, 1997.
Pinto, J. M.; Moro, L. F. L. A Planning Model for Petroleum Refineries. Brazilian Journal of Chemical Engineering, 17(4-7), 575-585, 2000.
Pinto, J. M.; Joly, M.; Moro, L. F. L. Planning and Scheduling Models for Refinery Operations. Computers & Chemical Engineering, 24, 2259-2276, 2000.
Speight, J. G.; Ozum, B. Petroleum Refining Processes. Marcel Dekker: New York, pp. 320-321, 2002.
Simchi-Levi, D.; Kaminsky, P.; Simchi-Levi, E. Designing and Managing the Supply Chain. McGraw-Hill Inc., New York, 2003.
Tan, K. C. A Framework of Supply Chain Management Literature. European Journal of Purchasing and Supply Management, 7, 39-48, 2001.
Tang, L.; Liu, J.; Rong, A.; Yang, Z. A Review of Planning and Scheduling Systems and Methods for Integrated Steel Production. European Journal of Operation Research, 133, 1-20, 2001.
Watkins, R. N. Petroleum Refining Distillation. 2nd ed., Houston: Gulf Publishing Co., 1979.
Wenkai Li, W.; Hui, C. W.; Li, A. Integrating CDU, FCC and Product Blending Models into Refinery Planning. Computers & Chemical Engineering, 29, 2010-2028, 2005.
Xie, Y.; Petrovic, D.; Burnham, K. A Heuristic Procedure for the Two-Level Control of Serial Supply Chains under Fuzzy Customer Demand. Int. J. Production Economics, 102, 37-50, 2006.
Zhang, J.D.; Rong, G. An MILP Model for Multi-period Optimization of Fuel Gas System Scheduling in Refinery and its Marginal Value Analysis. Chemical engineering Research and Design, 86, 141- 151, 2008
Zhang, N. ; Zhu, X. X. A Novel Modelling and Decomposition Strategy for Overall Refinery Optimization. Computers & Chemical Engineering, 24, 1543-1548, 2000.
柯清水, 石油化學概論,正文書局有限公司, 台北, 1980
徐武軍, 石油化學工業導論,高立圖書有限公司, 台北, 2001
徐武軍, 石油化學工業:原料製程及市場, 五南圖書有限公司,台北, 2005
謝俊雄, 石油化學工業, 文京圖書有限公司,台北, 1977
林茂文,蔡德慶,胡鑫彬, 經濟部七十四年度研究發展專題:石油工業線型規劃模式之研究, 中國石油公司, 台北, 1985
楊思廉, 工業化學概論, 高立圖書有限公司, 台北, 1999