簡易檢索 / 詳目顯示

研究生: 李石草
Ly, Thach-Thao
論文名稱: 鐮孢菌屬(Fusarium verticillioides)、產氣腸桿菌(Klebsiella aerogenes)產生的微生物揮發性氣味對水稻(Oryza sativa L.) 幼苗在植株生長和逆境耐受性的影響
The effect of microbial volatile produced by Fusarium verticillioides, Klebsiella aerogenes on plant growth and stress tolerance in rice (Oryza sativa L.) seedlings
指導教授: 黃浩仁
Huang, Hao-Jen
共同指導教授: 邱啟洲
Chiu, Chi-Chou
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 36
外文關鍵詞: Fusarium verticillioides, Klebsiella aerogene, plant growth promotion, stress tolerance, abiotic stress
相關次數: 點閱:71下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Global environmental change is becoming a serious problem worldwide, requires novel eco-friendly products that allow sustainable growth and commercial production following the needs of farmers and consumers. Hence, there are many studies have been done to discover eco-friendly alternatives, and volatile organic compounds emitted from microorganisms have emerged as effective, cheaper, and friendly with environment. Here, we studied the functional microbe-emitted volatiles in mediating plant growth promotion under stress and non-stress conditions, also the insight of molecular mechanisms related to growth promotion. Volatile compounds used in this study were produced by Fusarium verticillioides and Klebsiella aerogene. Shoot elongation in seedlings exposed to Fusarium and Klebsiella were increased but differ in root growth. There is adjusting expression of genes involved in hormone production resulted in the increased shoot growth. CKX1, CKX9 are responsible for degradation of cytokinin, was downregulated in exposed shoots result in the induction of cytokinin levels in shoot. High content of cytokinin may cause systemic acquired resistance process via induction of salicylic acid and PR1b protein activities. Interestingly, RR9, a cytokinin regulator, was induced the transcript levels in exposed plants meaning that there is negative feedback of cytokinin production within plant. Additionally, gibberellin 1 (GA1) production was triggered by down-expression levels of SAP11 (OsDOG), a negative regulator of GA. Fusarium not only induced the elongation of shoot but also enhanced the absorption of the nutrients by elevating the transcriptional levels of NAS2, one of genes in NAS family involve in metal transport. Furthermore, Fusarium and Klebsiella have been shown to increase the tolerance of plant to salt and copper stress, showed by reduction of ROS accumulation and cell death area on root tips. There are different impacts on antioxidant system between salt and copper stress led to the difference in antioxidant systems. Whereas, only SOD and POD-e,f isozymes still increase function in copper-stressed plant exposed to volatiles, almost isozyme of CAT, APX, POD and SOD were inducted activities in exposed plant stress by salt. Proline, member of ROS-scavengers, increased in exposed roots under both copper and salt stress.

    ABSTRACT I ACKNOWLEDGEMENTS II TABLE OF CONTENTS III LIST OF TABLES V LIST OF FIGURES VI CHAPTER ONE INTRODUCTION 1 1.1 Impact of abiotic stress on plant growth and its responses 1 1.2 Roles of volatile in plant growth 2 1.3 Microbial volatile emission 3 1.4 The positive effect of MVOCs in plant abiotic stress tolerance 4 1.5 Aim of study 4 CHAPTER TWO MATERIALS AND METHODS 6 2.1 Plant materials and growth conditions 6 2.2 Microbes culture condition 6 2.3 Microbe-mediated plant growth promotion via MVOC 6 2.4 Abiotic stress examination 7 2.5 Cell death, total ROS evaluation 7 2.6 Native PAGE profiling of CAT, APX, POD, SOD activity 7 2.7 Measurement of proline content 8 2.8 RNA isolation and semi-qPCR analysis 8 2.9 Statistical analysis 8 CHAPTER THREE RESEARCH RESULTS 9 3.1 Volatiles produced by Fusarium verticillioides (YMfE-01) and Klebsiella aerogenes promote shoot growth, not the root. 9 3.1.1. Volatile-mediated plant growth promotion by F. verticillioides (YMfE-01) or K. aerogenes 9 3.1.2. FvVCs impact the transcription of the gene involved in phytohormone biosynthesis. 9 3.2 Fusarium verticillioides (YMfE-01) and Klebsiella aerogenes induced copper and salt stress tolerance in rice. 10 3.2.1. Positive impact of F. verticillioides (YMfE-01) and K. aerogenes in rice tolerance to copper stress 10 3.2.2. Effect of K. aerogenes on antioxidant system activities 10 3.2.3. Volatile released by F. verticillioides (YMfE-01) ameliorated salt stress tolerance of rice seedlings. 11 3.2.4. Positive effect of F. verticillioides (YMfE-01) on antioxidant system activities. 11 CHAPTER FOUR DISCUSSION 13 CHAPTER FIVE CONCLUSION 16 REFERENCES 17 APPENDICES 36

    Audrain, B., Farag, M. A., Ryu, C. M., & Ghigo, J. M. (2015). Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews, 39(2), 222–233. https://doi.org/10.1093/femsre/fuu013
    Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L., & Weisskopf, L. (2014). The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant Journal, 80(5), 758–771. https://doi.org/10.1111/tpj.12666
    Banchio, E., Xie, X., Zhang, H., & Paré, P. W. (2009). Soil bacteria elevate essential oil accumulation and emissions in sweet basil. Journal of Agricultural and Food Chemistry, 57(2), 653–657. https://doi.org/10.1021/jf8020305
    Banu, A.N., Hoque, A., Watanabe-Sugimoto, M., Islam, M.M, Uraji, M., Matsuoka, & K., et al. (2010). Proline and glycinebetaine amelorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but nit superoxide or nitric oxide in tobaco cultured cells. Bioscience, Biotechnology and Biochemistry, 74, 2043–2049.
    Bockheim, J. G., & Gennadiyev, A. N. (2000). The role of soil-forming processes in the definition of taxa in Soil Taxonomy and the World Soil Reference Base. Geoderma, 95(1–2), 53–72. https://doi.org/10.1016/S0016-7061(99)00083-X
    Castulo-Rubio, D. Y., Alejandre-Ramírez, N. A., Orozco-Mosqueda, M. del C., Santoyo, G., Macías-Rodríguez, L. I., & Valencia-Cantero, E. (2015). Volatile Organic Compounds Produced by the Rhizobacterium Arthrobacter agilis UMCV2 Modulate Sorghum bicolor (Strategy II Plant) Morphogenesis and SbFRO1 Transcription In Vitro. Journal of Plant Growth Regulation, 34(3), 611–623. https://doi.org/10.1007/s00344-015-9495-8
    Charan Tripathy, B., & Oelmüller, R. (2012). Plant Signaling & Behavior Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior 1621 Plant Signaling & Behavior, 7, 1621–1633. https://doi.org/10.4161/psb.22455
    Damanik, R. I., Marbun, P., & Sihombing, L. (2016). Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence. IOP Conference Series: Earth and Environmental Science, 41(1). https://doi.org/10.1088/1755-1315/41/1/012003
    Escudero, V., Abreu, I., del Sastre, E., Tejada-Jiménez, M., Larue, C., Novoa-Aponte, L., Castillo-González, J., Wen, J., Mysore, K. S., Abadía, J., Argüello, J. M., Castillo-Michel, H., Álvarez-Fernández, A., Imperial, J., & González-Guerrero, M. (2020). Nicotianamine Synthase 2 Is Required for Symbiotic Nitrogen Fixation in Medicago truncatula Nodules. Frontiers in Plant Science, 10(January), 1–14. https://doi.org/10.3389/fpls.2019.01780
    Gull, Audil & Lone, Ajaz & Wani, N. (2013). Biotic and Abiotic stresses in Plants. Intech, 32(July), 137–144. http://www.intechopen.com/books/trends-in-telecommunications-technologies/gps-total-electron-content-tec- prediction-at-ionosphere-layer-over-the-equatorial-region%0AInTec%0Ahttp://www.asociatiamhc.ro/wp-content/uploads/2013/11/Guide-to-Hydropower.pdf
    Halliwell, B., Gutteridge, & J.M.C. (2007). Free Radicals in Biology and Medicine. Oxford University Press, New York.
    Hamid, B., Zaman, M., Farooq, S., Fatima, S., Sayyed, R. Z., Ahmad Baba, Z., Sheikh, T. A., Reddy, M. S., Enshasy, H. El, Gafur, A., & Suriani, N. L. (2021). sustainability Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. https://doi.org/10.3390/su13052856
    Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Al Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 1–52. https://doi.org/10.3390/antiox9080681
    Hoque, M. A., Banu, M. N. A., Okuma, E., Amako, K., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2007). Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. Journal of Plant Physiology, 164(11), 1457–1468. https://doi.org/10.1016/j.jplph.2006.10.004
    Inoue, H., Higuchi, K., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2003). Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant Journal, 36(3), 366–381. https://doi.org/10.1046/j.1365-313X.2003.01878.x
    Ito, Y., & Kurata, N. (2006). Identification and characterization of cytokinin-signalling gene families in rice. Gene, 382, 57–65. https://doi.org/10.1016/j.gene.2006.06.020
    Jain, M., Tyagi, A.K., Khurana, & J.P. (2006). Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biology, 6, 1.
    Ji, J., Yuan, D., Jin, C., Wang, G., Li, X., & Guan, C. (2020). Enhancement of growth and salt tolerance of rice seedlings (Oryza sativa L.) by regulating ethylene production with a novel halotolerant PGPR strain Glutamicibacter sp. YD01 containing ACC deaminase activity. Acta Physiologiae Plantarum, 42(4). https://doi.org/10.1007/s11738-020-3034-3
    Jiang, C.-J., Shimono, M., Sugano, S., Kojima, M., Liu, X., Inoue, H., Sakakibara, H., & Takatsuji, H. (2013). Cytokinins Act Synergistically with Salicylic Acid to Activate Defense Gene Expression in Rice. / 287 MPMI, 26(3), 287–296. https://doi.org/10.1094/MPMI-06-12-0152-R
    Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., & Piechulla, B. (2009). Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology, 81(6), 1001–1012. https://doi.org/10.1007/s00253-008-1760-3
    Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015a). Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in Plant Science, 20(4), 206–211. https://doi.org/10.1016/j.tplants.2015.01.004
    Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015b). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in Plant Science, 6(MAR). https://doi.org/10.3389/fpls.2015.00151
    Kiba, & T., et al. (2003). The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol, 44, 868–874.
    Kolbert, Z., Pető, A., Lehotai, N., Feigl, G., & Erdei, L. (2012). Long-term copper (Cu 2+ ) exposure impacts on auxin, nitric oxide (NO) metabolism and morphology of Arabidopsis thaliana L. Plant Growth Regulation, 68(2), 151–159. https://doi.org/10.1007/s10725-012-9701-7
    Korpi, A., Järnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2), 139–193. https://doi.org/10.1080/10408440802291497
    Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., Richter, P., Tamayo, J., & Donoso, R. (2016). Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Frontiers in Microbiology, 7(NOV). https://doi.org/10.3389/FMICB.2016.01838
    Lee, Samantha, Yap, M., Behringer, G., Hung, R., & Bennett, J. W. (2016). Volatile organic compounds emitted by trichoderma species mediate plant growth. Fungal Biology and Biotechnology, 3(1), 1–14. https://doi.org/10.1186/s40694-016-0025-7
    Lee, Sichul, Persson, D. P., Hansen, T. H., Husted, S., Schjoerring, J. K., Kim, Y. S., Jeon, U. S., Kim, Y. K., Kakei, Y., Masuda, H., Nishizawa, N. K., & An, G. (2011). Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnology Journal, 9(8), 865–873. https://doi.org/10.1111/j.1467-7652.2011.00606.x
    Lemfack, M. C., Gohlke, B. O., Toguem, S. M. T., Preissner, S., Piechulla, B., & Preissner, R. (2018). MVOC 2.0: A database of microbial volatiles. Nucleic Acids Research, 46(D1), D1261–D1265. https://doi.org/10.1093/nar/gkx1016
    Li, N., & Kang, S. (2018). Do volatile compounds produced by Fusarium oxysporum and Verticillium dahliae affect stress tolerance in plants? Mycology, 9(3), 166–175. https://doi.org/10.1080/21501203.2018.1448009
    Li, Z. T., Janisiewicz, W. J., Liu, Z., Callahan, A. M., Evans, B. E., Jurick, W. M., & Dardick, C. (2019). Exposure in vitro to an environmentally isolated strain TC09 of Cladosporium sphaerospermum triggers plant growth promotion, early flowering, and fruit yield increase. Frontiers in Plant Science, 9(February), 1–19. https://doi.org/10.3389/fpls.2018.01959
    Liu, Ya, Ren, X., Jeong, H. K., Wei, H., & Jeong, B. R. (2018). Growth and physiological responses of adenophora triphylla (Thunb.) A.DC. Plug seedlings to day and night temperature regimes. Agronomy, 8(9). https://doi.org/10.3390/agronomy8090173
    Liu, Yaju, Xu, Y., Xiao, J., Ma, Q., Li, D., Xue, Z., & Chong, K. (2011). OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. Journal of Plant Physiology, 168(10), 1098–1105. https://doi.org/10.1016/j.jplph.2010.12.013
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
    Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12), e02952. https://doi.org/10.1016/j.heliyon.2019.e02952
    Minerdi, D., Bossi, S., Maffei, M. E., Gullino, M. L., & Garibaldi, A. (2011). Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiology Ecology, 76(2), 342–351. https://doi.org/10.1111/j.1574-6941.2011.01051.x
    Mitsuhara, I., Iwai, T., Seo, S., Yanagawa, Y., Kawahigasi, H., Hirose, S., Ohkawa, Y., & Ohashi, Y. (2008). Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol Genet Genomics, 279, 415–427. https://doi.org/10.1007/s00438-008-0322-9
    Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490–498. https://doi.org/10.1016/j.tplants.2004.08.009
    Mondal, & K. et al. (2004). Antioxidants systems in ripening tomato fruits. Biol. Plantarum, 48, 49–53.
    Niemann, M. C. E., Weber, H., Hluska, T., Leonte, G., Anderson, S. M., Novák, O., Senes, A., & Werner, T. (2018). The cytokinin oxidase/dehydrogenase CKX1 is a membrane-bound protein requiring homooligomerization in the endoplasmic reticulum for its cellular activity. Plant Physiology, 176(3), 2024–2039. https://doi.org/10.1104/pp.17.00925
    Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B., & Schnitzler, J. P. (2014). Biogenic volatile emissions from the soil. Plant, Cell and Environment, 37(8), 1866–1891. https://doi.org/10.1111/pce.12340
    Rehman, A. U., Bashir, F., Ayaydin, F., Kóta, Z., Páli, T., & Vass, I. (2021). Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiologia Plantarum, 172(1), 7–18. https://doi.org/10.1111/ppl.13265
    Ryu, C. M., Faragt, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4927–4932. https://doi.org/10.1073/pnas.0730845100
    Sağlam, A., Yetişsin, F., Demiralay, M., & Terzi, R. (2015). Copper Stress and Responses in Plants. Plant Metal Interaction: Emerging Remediation Techniques, 21–40. https://doi.org/10.1016/B978-0-12-803158-2.00002-3
    Schulz, S., & Dickschat, J. S. (2007). Bacterial volatiles: The smell of small organisms. Natural Product Reports, 24(4), 814–842. https://doi.org/10.1039/b507392h
    Sharifi, R., & Ryu, C. M. (2018). Revisiting bacterial volatile-mediated plant growth promotion: Lessons from the past and objectives for the future. Annals of Botany, 122(3), 349–358. https://doi.org/10.1093/aob/mcy108
    Sharma, P., Dubey, & R.S. (2005). Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol, 162, 854–864.
    Siddiqui, M. H., Alamri, S., Al-Khaishany, M. Y., Nasir Khan, M., Al-Amri, A., Ali, H. M., Alaraidh, I. A., & Alsahli, A. A. (2019). Exogenous Melatonin Counteracts NaCl-Induced Damage by Regulating the Antioxidant System, Proline and Carbohydrates Metabolism in Tomato Seedlings. International Journal of Molecular Sciences Article Int. J. Mol. Sci, 20, 353. https://doi.org/10.3390/ijms20020353
    Szabado, L., Savoure, & A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89–97.
    Thounaojam, T.C., Panda, P., Mazumdar, P., Kumar, D., Sharna, G.D., Sahoo, L., Sanjib, & P. (2012). Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol. Bio, 53, 33–39.
    Tyagi, S., Mulla, S.I., Lee, K.J., Chae, J.C., &Shukla, & P. (2018). VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Critical Reviews in Biotechnology, 38, 1277–1296.
    Wang, F., B, Z., Z, S., & C, Z. (n.d.). (2009). Relationship Between Proline and Hg 2+-Induced Oxidative Stress in a Tolerant Rice Mutant. Arch. Environ. Contam. Toxicol, 56, 723–731. https://doi.org/10.1007/s00244-008-9226-2
    Wang, Y., Luo, Z., Du, R., Liu, Y., Ying, T., & Mao, L. (2013). Effect of nitric oxide on antioxidative response and proline metabolism in banana during cold storage. Journal of Agricultural and Food Chemistry, 61(37), 8880–8887. https://doi.org/10.1021/jf401447y
    Yadav, Summy & Modi, Payal & Dave, Akanksha & Vijapura, Akdasbanu & Patel, Disha & Patel, M. (2013). Effect of Abiotic Stress con Crops. Intech, 32(July), 137–144.
    Zaman, M., Kurepin, L. V., Catto, W., & Pharis, R. P. (2015). Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators. Journal of the Science of Food and Agriculture, 95(9), 1777–1785. https://doi.org/10.1002/jsfa.6938
    Zhang, H., Sun, Y., Xie, X., Kim, M. S., Dowd, S. E., & Paré, P. W. (2009). A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant Journal, 58(4), 568–577. https://doi.org/10.1111/j.1365-313X.2009.03803.x
    Zhao, S., Liu, Q., Qi, Y., Duo, & L. (2010). Responses of root growth and protective enzymes to copper stress in Turfgrass. Acta Biol. Cracov Ser. Bot, 52, 7–11.
    Zou, C., Li, Z., & Yu, D. (2010). Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. Journal of Microbiology, 48(4), 460–466. https://doi.org/10.1007/s12275-010-0068-z

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE