| 研究生: |
蕭信睿 Hsiao, Hsin-Jui |
|---|---|
| 論文名稱: |
超高性能纖維混凝土於梁柱接頭耐震補強之效用 Effectiveness of Ultra-High Performance Fiber Reinforced Concrete for Retrofitting Beam-Column Joints |
| 指導教授: |
洪崇展
Hung, Chung-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 274 |
| 中文關鍵詞: | 超高性能纖維混凝土 、鋼筋網 、外部梁柱接頭 、結構補強 |
| 外文關鍵詞: | UHPFRC, Steel Mesh, Exterior Beam-Column Joints, Retrofit |
| 相關次數: | 點閱:194 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1999年集集大地震後,台灣國家地震工程研究中心針對既有建物的耐震能力評估與補強技術展開一系列的研究與試驗,隨著新型混凝土材料的發展,高強度混凝土的應用雖然可以節省材料的用量及減少結構物重量等效益,但其性質較脆性,容易於發生破壞時產生強度驟降,相較之下,本研究主要利用超高性能纖維混凝土(Ultra-High Performance Fiber Reinforced Concrete, UHPFRC)補強於鋼筋混凝土梁柱接頭,藉由提高混凝土強度,不僅能夠有效減少補強後之尺寸,且混凝土中之鋼纖維可藉由橋接效應,增加混凝土拉力強度、提高能量消散能力。本研究依照早期梁柱接頭典型缺失,設計一座非韌性鋼筋混凝土梁柱外部接頭試體作為控制組,使用六種不同補強方式探討其對於既有接頭之補強效益,另外使用UHPFRC與鋼筋網補強兩座已達完全倒塌狀態之梁柱接頭,探討其補強方法對於受損接頭之補強效益。
根據試驗結果與分析,不論補強前梁柱接頭為既有或受損狀態,超高性能纖維混凝土做為補強材料均可有效改變試體之破壞模式,提升32%~66%之試體側向強度、35%~217%能量消散能力等耐震能力,同時可以降低試體損傷值,提升結構物體抗地震力受損之能力,其中以UHPFRC與鋼筋網搭配使用可呈現更顯著的補強效益。此外,UHPFRC與鋼筋網之預鑄補強之工法亦能得到與場鑄補強工法相近的補強效益,此方法可簡化施工的程序並縮短工時,提高補強施工的效率。
After Chi-Chi earthquake in 1999, Taiwan National Center for Research on Earthquake Engineering started to conduct a series of research and experiments for the seismic assessment and retrofit techniques of existing building. With development of new concrete materials, application of high strength concrete (HSC) is effective to reduce the usage of material and the weight of the structure. However, HSC showed brittle behavior and dramatic drop of strength after member cracking. Ultra-high performance fiber reinforced concrete (UHPFRC) was used to retrofit reinforced concrete beam-column joints (BCJs) in this study. Dimensions of member section can be decreased after retrofitting by increasing concrete compressive strength. Furthermore, addition of steel fiber in the concrete increased tensile strength and ability of energy dissaption due to fiber bridging effect. According to the typical substandard reinforcing detail in old existing building, a non-ductile reinforced concrete exterior BCJ was designed as control specimen. Six different retrofitting solutions were applied to investigate the effectiveness of UHPFRC for retrofitting existing BCJs. In addition to retrofitting existing BCJs, two BCJs which experienced complete damaged retrofitted by UHPFRC and steel mesh were included in this study. Due to the test result, the applictation of UHPFRC to retrofit existing and damaged BCJs showed significant effectiveness. UHPFRC jacket provided a considerable increase in strength by 35%~66% and ability of energy dissipation by 35%~217%. Damaged index can be also reduced after retrofitting.
[1] 318, A. C. (2014). Building Code Requirements for Structural Concrete (ACI 318-14)[and] Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14).
[2] 318, A. C. (2019). Building Code Requirements for Structural Concrete (ACI 318-19): An ACI Standard: Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19).
[3] 352, J. A. A. C. (2002). Recommendations for Design of Beam‐Column Connections in Monolithic Reinforced Concrete Structures (ACI 352R‐02).
[4] Adibi, M., Marefat, M. S., Arani, K. K., & Zare, H. (2017). External retrofit of beam-column joints in old fashioned RC structures. Earthq Struct, 12(2), 237-250.
[5] Al-Osta, M., Isa, M., Baluch, M., & Rahman, M. (2017). Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete. Construction and building materials, 134, 279-296.
[6] Bansal, P. P., Kumar, M., & Dar, M. A. (2016). Retrofitting of exterior RC beam-column joints using ferrocement jackets. Earthquakes and Structures, 10(2), 313-328.
[7] Beschi, C., Riva, P., Metelli, G., & Meda, A. (2015). HPFRC jacketing of non seismically detailed RC corner joints. Journal of earthquake engineering, 19(1), 25-47.
[8] Bracci, J. M., Reinhorn, A. M., & Mander, J. B. (1995). Seismic retrofit of reinforced concrete buildings designed for gravity loads: performance of structural model. Structural Journal, 92(6), 711-723.
[9] Desayi, P., & Nandakumar, N. (1995). A semi-empirical approach to predict shear strength of ferrocement. Cement and Concrete Composites, 17(3), 207-218.
[10] Hakuto, S., Park, R., & Tanaka, H. (2000). Seismic load tests on interior and exterior beam-column joints with substandard reinforcing details. Structural Journal, 97(1), 11-25.
[11] Hung, C.-C., & Chen, Y.-S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
[12] Hung, C.-C., & El-Tawil, S. (2010). Cyclic model for high performance fiber reinforced cementitious composite structures. In Improving the Seismic Performance of Existing Buildings and Other Structures (pp. 1341-1352).
[13] Hung, C.-C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), 1499-1507.
[14] Hung, C.-C., Hu, F.-Y., & Yen, C.-H. (2018). Behavior of slender UHPFRC columns under eccentric loading. Engineering Structures, 174, 701-711.
[15] Hung, C.-C., Li, H., & Chen, H.-C. (2017). High-strength steel reinforced squat UHPFRC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
[16] Hung, C.-C., & Li, S.-H. (2013). Three-dimensional model for analysis of high performance fiber reinforced cement-based composites. Composites Part B: Engineering, 45(1), 1441-1447.
[17] Hung, C.-C., Su, Y.-F., & Yu, K.-H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and building materials, 41, 37-48.
[18] Hung, C.-C., Yen, W.-M., & Yu, K.-H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: Experimental investigation and computational analysis. Construction and building materials, 107, 287-298.
[19] Karayannis, C. G., Chalioris, C. E., & Sirkelis, G. M. (2008). Local retrofit of exterior RC beam–column joints using thin RC jackets—An experimental study. Earthquake engineering & structural dynamics, 37(5), 727-746.
[20] Karayannis, C. G., & Sirkelis, G. M. (2008). Strengthening and rehabilitation of RC beam–column joints using carbon‐FRP jacketing and epoxy resin injection. Earthquake engineering & structural dynamics, 37(5), 769-790.
[21] Kaya, O., Yalçın, C., Parvin, A., & Altay, S. (2019). Retrofitting of Reinforced Concrete Beam-Column Joints by Composites--Part I: Experimental Study. ACI Structural Journal, 116(1).
[22] Khan, M. I., Al-Osta, M. A., Ahmad, S., & Rahman, M. K. (2018). Seismic behavior of beam-column joints strengthened with ultra-high performance fiber reinforced concrete. Composite Structures, 200, 103-119.
[23] Li, B., Lam, E. S.-s., Wu, B., & Wang, Y.-y. (2013). Experimental investigation on reinforced concrete interior beam–column joints rehabilitated by ferrocement jackets. Engineering Structures, 56, 897-909.
[24] Pampanin, S., Magenes, G., & Carr, A. J. (2003). Modelling of shear hinge mechanism in poorly detailed RC beam-column joints.
[25] Park, J. G., & Otsuka, H. (1999). Optimal yield level of bilinear seismic isolation devices. Earthquake engineering & structural dynamics, 28(9), 941-955.
[26] Park, R. (1989). Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the new Zealand society for earthquake engineering, 22(3), 155-166.
[27] Park, S., & Mosalam, K. M. (2012). Parameters for shear strength prediction of exterior beam–column joints without transverse reinforcement. Engineering Structures, 36, 198-209.
[28] Park, Y., Ang, A. H., & Wen, Y. (1987). Damage-limiting aseismic design of buildings. Earthquake spectra, 3(1), 1-26.
[29] Park, Y.-J., Ang, A. H.-S., & Wen, Y. K. (1985). Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering, 111(4), 740-757.
[30] Parra-Montesinos, G. J., Peterfreund, S. W., & Shih-Ho, C. (2005). Highly damage-tolerant beam-column joints through use of high-performance fiber-reinforced cement composites. ACI Structural Journal, 102(3), 487.
[31] Priestley, M. (1997). Displacement-based seismic assessment of reinforced concrete buildings. Journal of earthquake engineering, 1(01), 157-192.
[32] Rokugo, K. (2008). Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC): Japan Society of Civil Engineers, Concrete Committee.
[33] Shaaban, I. G., & Seoud, O. A. (2018). Experimental behavior of full-scale exterior beam-column space joints retrofitted by ferrocement layers under cyclic loading. Case studies in construction materials, 8, 61-78.
[34] Shafaei, J., Hosseini, A., & Marefat, M. S. (2014). Seismic retrofit of external RC beam–column joints by joint enlargement using prestressed steel angles. Engineering Structures, 81, 265-288.
[35] Shafaei, J., Zareian, M. S., Hosseini, A., & Marefat, M. S. (2014). Effects of joint flexibility on lateral response of reinforced concrete frames. Engineering Structures, 81, 412-431.
[36] Sharma, A. (1986). Shear strength of steel fiber reinforced concrete beams. Paper presented at the Journal Proceedings.
[37] Sharma, R., & Bansal, P. P. (2019). Behavior of RC exterior beam column joint retrofitted using UHP-HFRC. Construction and building materials, 195, 376-389.
[38] Wan, Y.-C., & Hsu, K. (2009). Shear Strength of RC Jacketed Interior Beam-Column Joints without Horizontal Shear Reinforcement. ACI Structural Journal, 106(2).
[39] 吳奕翰. (2016). 超高性能纖維混凝土結構構件之剪力行為與設計探討. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/j4jt73
[40] 李宏仁. (2000). 鋼筋混凝土耐震梁柱接頭剪力強度之研究. (博士). 國立臺灣科技大學, 台北市. Retrieved from https://hdl.handle.net/11296/99p254
[41] 李和昇. (2016). 超高性能纖維混凝土之拉伸硬化行為與結構構件之撓曲行為. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/4bh7sb
[42] 沈笠筠. (2016). 低矮型超高性能纖維混凝土結構牆受反覆載重之分析模型. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/wfujnd
[43] 林英如. (2011). 新型高強度鋼筋混凝土梁柱接頭反復載重試驗之資料庫建置與參數分析. (碩士). 國立雲林科技大學, 雲林縣. Retrieved from https://hdl.handle.net/11296/5j5u77
[44] 邱聰智, 邱建國, 葉勇凱, 簡文郁, 鍾立來,& 周德光. (2008). 典型校舍耐震補強設計與驗證. 國家地震工程研究中心, 報告編號:NCREE-08-038
[45] 邱耀正, 劉玉文, 黃錦旗, 蕭輔沛, 邱一哲, 邱聰智,& 黃世建. (2008). 校舍建築構架式鋼板補強現地試驗與分析. 國家地震工程研究中心, 報告編號:NCREE-08-034
[46] 洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51.
[47] 紀盈綺. (2012). 鋼筋混凝土梁柱接頭耐震試驗資料庫建構與參數分析. (碩士). 國立雲林科技大學, 雲林縣. Retrieved from https://hdl.handle.net/11296/kej7ed
[48] 胡福堯. (2017). 超高性能纖維混凝土細長柱之無偏心與偏心軸壓行為研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/g63eh6
[49] 高啟洲. (2002). 非韌性鋼筋混凝土梁柱內接頭補強之研究. (碩士). 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/84p2tb
[50] 張又仁. (2013). 新高強度鋼筋混凝土內部梁柱接頭剪力強度測試. (碩士). 國立雲林科技大學, 雲林縣. Retrieved from https://hdl.handle.net/11296/wq34vg
[51] 郭青翰. (2011). 新高強度鋼筋混凝土梁柱接頭耐震性能研究. (碩士). 國立雲林科技大學, 雲林縣. Retrieved from https://hdl.handle.net/11296/92yy28
[52] 黃柏嘉. (2016). 具橫向梁及版之新高強度鋼筋混凝土外部接頭耐震性能測試. (碩士). 國立雲林科技大學, 雲林縣. Retrieved from https://hdl.handle.net/11296/abg9n7
[53] 黃韋晴. (2017). 考慮接頭剪力強度衰減之鋼筋混凝土構架側推分析. (碩士). 國立雲林科技大學, 雲林縣. Retrieved from https://hdl.handle.net/11296/6ydgkk
[54] 溫國威. (2018). 超高性能纖維混凝土梁構件之剪力行為研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/25jern
[55] 趙嘉盟. (2018). 超高性能混合纖維混凝土梁:剪力行為. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/wkadz4
[56] 潘沛洋. (2018). 反覆載重下非韌性鋼筋混凝土柱及梁柱接頭行為之研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/neh8qd
[57] 謝秉倫. (2017). 高強度鋼筋加勁超高性能纖維混凝土低矮型剪力牆之剪力行為研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/54s3zj
[58] 顏愷建. (2014). 鋼絲網加勁高韌性纖維水泥基複合材料之力學行為研究. (碩士). 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/fphz7s
[59] 顏誠皜. (2018). 超高性能纖維混凝土柱軸壓圍束行為研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/8bpy4v
[60] 최유진. (2018). Shear strengthening of concrete columns by textile reinforced UHPFRC jacketing. 서울대학교 대학원, Retrieved from http://hdl.handle.net/10371/141362