簡易檢索 / 詳目顯示

研究生: 陳昱儒
Chen, Yu-Ru
論文名稱: 穿臨界二氧化碳朗肯循環之渦輪機研發
Development of Turbines for Transcritical Carbon Dioxide Rankine Cycle
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 134
中文關鍵詞: 特斯拉渦輪機穿臨界二氧化碳朗肯循環渦輪流場模擬
外文關鍵詞: Tesla Turbine, Transcritical CO2 Rankine Cycle, Turbine Flow Field Simulation
相關次數: 點閱:70下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年節能環保意識上升,廢熱回收引起了廣泛的關注,然而低溫廢熱的發電效率仍然存在許多瓶頸。若以化石燃料為能源之直熱式蒸汽動力循環(亞臨界朗肯循環),直接應用於低溫廢熱發電時,發電效率將受到極大地影響,因此,適合應用於低溫廢熱回收之循環配置至關重要。在本實驗室先前之研究中發現,kW級發電規模以及約230 ℃以下之低溫熱源應用中,增設復熱器之穿臨界二氧化碳朗肯循環效率最高,在特定熱源溫度下,甚至比增設復熱器之穿臨界二氧化碳布累登頓循環效率高出兩倍。因此實驗室持續規劃建立一帶有復熱器的穿臨界二氧化碳朗肯循環發電平台,使用區之低溫廢熱為熱源,並於此篇文獻中成功組建完成,並實現亞/穿臨界二氧化碳朗肯循環發電。又發現特斯拉渦輪相較於傳統式的葉片渦輪機在小發電規模循環中有較出色的表現,因此在本研究中先利用開源的CFD軟體OpenFOAM建立一應用於穿臨界二氧化碳朗肯璇循環的特斯拉渦輪簡化模型。以模擬方式了解穿臨界狀態之二氧化碳於特斯拉渦輪內部流動之狀況,並且釐清各設計參數後從中找出較為關鍵的設計參數,將其無因次化後進行調整及模擬,透過模擬分析後得知適合穿臨界二氧化碳為流體的特斯拉渦輪設計參數。

    In recent years, the awareness of energy conservation and environmental protection has risen, and waste heat recovery has attracted widespread attention. However, there are still many bottlenecks in the power generation efficiency of low-temperature waste heat. If the direct heating steam power cycle (subcritical Rankine cycle) using fossil fuels as energy is directly applied to low-temperature waste heat power generation, the power generation efficiency will be greatly affected. Therefore, the cycle configuration suitable for low-temperature waste heat recovery is very important. important. In the previous research of our laboratory, it was found that in kW-level power generation scale and low-temperature heat source applications below about 230 ℃, the efficiency of the transcritical carbon dioxide Rankine cycle with the addition of a recuperator is the highest. The transcritical carbon dioxide Bradenton cycle efficiency of the device is twice as high. Therefore, the laboratory continues to plan and establish a transcritical CO2 Rankine cycle power generation platform with a reheater, using the low-temperature waste heat in the area as a heat source, and successfully completed it in this document, and realized sub/transcritical CO2 Rankine cycle power generation . It is also found that the Tesla turbine has better performance in the small-scale power generation cycle than the traditional blade turbine. Therefore, in this study, the open-source CFD software OpenFOAM is used to establish a system for the transcritical CO2 Rankine cycle. Simplified model of a Tesla turbine. Use simulation to understand the flow of carbon dioxide in the transcritical state inside the Tesla turbine, and after clarifying the design parameters, find out the more critical design parameters, adjust and simulate them after dimensionless, after the simulation analysis Know the Tesla turbine design parameters suitable for transcritical carbon dioxide as fluid.

    摘要 I 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 縮寫說明 XIV 符號說明 XV 第一章、緒論 1 1-1 研究背景與動機 1 二氧化碳之穿臨界性質 2 穿臨界二氧化碳朗肯循環渦輪機 6 1-2 文獻回顧 7 各式渦輪機特性比較 7 各式動力循環之特斯拉渦輪機 10 適合應用於朗肯循環之渦輪機 12 渦輪機評估方式 14 1-3 研究目的 18 1-4 本文架構 19 第二章、模型建置流程與計算方法 20 2-1 問題描述及模擬程序 20 2-2 統御方程式數值方法 25 連續方程式 25 動量方程式 25 能量方程式 25 紊流模型 26 傳輸模型 27 狀態方程式 27 熱力學模型 28 力與扭矩方程式 29 2-3 網格建立及獨立性分析 32 2-4 平行運算設定及計算平台 39 第三章、特斯拉渦輪之CFD模擬結果與分析 41 3-1 基礎示範模型 41 3-2 轉速對於流場與輸出效能之影響 47 3-3 圓盤間距外徑比(B)對流場與輸出效能之影響 58 3-4 圓盤內外徑比(R)對流場與輸出效能之影響 68 第四章、穿臨界二氧化碳朗肯循環發電實驗平台 78 4-1 實驗平台設計與現況 78 4-2 測試方法 81 開迴路測試 82 閉迴路循環測試 82 4-3 整合式渦輪發電機開迴路運轉實驗 85 4-4 高速渦輪機運轉及循環實驗 89 開迴路運轉測試 89 閉迴路循環發電測試 91 第五章、結論與未來展望 97 5-1 結論 97 5-2 未來展望 99 參考文獻 100 附錄A thermophysicalProperties設定項目 105 附錄B forces設定項目 107 附錄C 儲熱式交換器性能測試 108 儲熱式熱交換器外觀及安裝位置 108 填充PCM使用之設備及流程 109 儲熱式熱交換器斷熱測試結果 112 附錄D穿臨界二氧化碳朗肯循環全系統發電測試 116

    [1] 經濟部能源局,民國110年能源轉型白皮書, https://www.esist.org.tw/publication/page2#ebook, access on: March 6, 2023.
    [2] Lawrence Livermore National Laboratory, Estimated U.S. Energy Flow Consumption in 2021, https://flowcharts.llnl.gov/, access on: March 6, 2023.
    [3] 能源報導103年9月號,https://weblis.lib.ncku.edu.tw/search~S1*cht/?searchtype=X&searcharg=%E8%83%BD%E6%BA%90%E5%A0%B1%E5%B0%8E&searchscope=1&sortdropdown=-&SORT=D&extended=0&SUBMIT=%E6%9F%A5%E8%A9%A2&searchlimits=&searchorigarg=Xt%3A%28%7Bu80FD%7D%7Bu6E90%7D%7Bu5831%7D%7Bu5C0E%7D%29%26SORT%3DD, access on: March 6, 2023.
    [4] NIST Reference Fluid Properties (REFPROP) v10.
    [5] National Refrigerants, Inc. (NRI) Safety Data Sheets, https://refrigerants.com/resources/safety-data-sheets/, access on: March 6, 2023.
    [6] M.Z. Hauschild, H. Wenzel, Environmental Assessment of Products, Volume 2: Scientific Background, Chapman & Hall, 1998.
    [7] J.M. Calm, G.C. Hourahan (2001), Refrigerant data summary, Engineered Systems 18(11), 74-88.
    [8] ASHRAE Handbook: Refrigeration systems and applications, American Society of Heating, Refrigerating and Air Conditioning Engineers, 1986.
    [9] White Paper: Revising flammable refrigerants, Underwriters Laboratories, 2011.
    [10] NFPA 704, standard system for the identification of the hazards of materials for emergency response, National Fire Protection Association, 2022.
    [11] P. Guo, S. Liu, J. Yan, J. Wang, Q. Zhang (2020), Experimental study on heat transfer of supercritical CO2 flowing in a mini tube under heating conditions, International Journal of Heat and Mass Transfer 153, 119623.
    [12] J. Li, Q. Liu, Z. Ge, Y. Duan, Z. Yang (2017), Thermodynamic performance analyses and optimization of subcritical and transcritical organic Rankine cycles using R1234ze(E) for 100-200 °C heat sources, Energy Convers Manage 149, 140-154.
    [13] H. Gao, C. Liu, C. He, X. Xu, S. Wu, Y. Li (2012), Performance analysis and working fluid selection of a supercritical organic Rankine cycle for low grade waste heat recovery, Energies 5 (9), 3233-3247.
    [14] N. Peng, E. Wang, H. Zhang (2021), Preliminary design of an axial-flow turbine for small-scale supercritical organic Rankine cycle, Energies 14 (17), 5277.
    [15] G. Manente, L.D. Lio, A. Lazzaretto (2016), Influence of axial turbine efficiency maps on the performance of subcritical and supercritical organic Rankine cycle systems, Energy 107, 761-772.
    [16] J. Song, X. Li, X. Ren, H. Tian, G. Shu, C. Gu, C. N. Markides (2020), Thermodynamic and economic investigations of transcritical CO2-cycle systems with integrated radial-inflow turbine performance predictions, Applied Thermal Engineering 165, 114604.
    [17] Y. Zhao, G. Liu, L. Li, Q. Yang, B. Tang, Y. Liu (2019), Expansion devices for organic Rankine cycle (ORC) using in low temperature heat recovery: A review, Energy Conversion and Management 199, 111944.
    [18] Tesla N., Turbine, U.S. Patent NO.1 061 206, 1913.
    [19] J.H. Armstrong (1952), An investigation of the performance of a modified Tesla turbine, M.S. Thesis, Georgia Institute of Technology.
    [20] A. Thomazoni, C. Ermel, P. Schneider, L. Vieira, J. Hunt, S. Ferreira, C. Rech, V. Gouvêa, Influence of operational parameters on the performance of Tesla turbines: Experimental investigation of a small-scale turbine, Energy 261, 125159.
    [21] J. Song, C.W. Gu, X.S. Li (2017), Performance estimation of Tesla turbine applied in small scale Organic Rankine Cycle (ORC) system, Applied Thermal Engineering 110, 318–326.
    [22] L. Talluri, O. Dumont, G. Manfrida, V. Lemort, D. Fiaschi (2020), Geometry definition and performance assessment of Tesla turbines for ORC, Energy 211, 118570.
    [23] G. Manfrida, L. Pacini, L. Talluri (2018), An upgraded Tesla turbine concept for ORC applications, Energy 158, 33-40.
    [24] L. Talluri, O. Dumont, G. Manfrida, V. Lemort, D. Fiaschia (2020), Experimental investigation of an organic Rankine cycle Tesla turbine working with R1233zd(E), Applied Thermal Engineering 174, 115293.
    [25] F. Ji, Y. Baoa, Y. Zhoua, F. Dub, H. Zhuc, S. Zhaob, G. Lib, X. Zhud, S. Ding (2019), Investigation on performance and implementation of Tesla turbine in engine waste heat recovery, Energy Conversion and Management 179, 326-338.
    [26] A. Aghagoli, M. Sorin (2020), CFD modelling and exergy analysis of a heat pump cycle with Tesla turbine using CO2 as a working fluid, Applied Thermal Engineering 178, 115587.
    [27] Y. Sheikhnejad, J. Simões, N. Martins (2020), Introducing Tesla turbine to enhance energy efficiency of refrigeration cycle, Energy Reports 6, 358-363.
    [28] B.P. H. Yan (2011), Tesla turbine for Pico Hydro applications, Guelph Engineering Journal 4, 1-8.
    [29] M.S.Y. Babu, S.A. Kumar, M.H. Prasat, R. Vignesh, D.D.K. Rao, A. Vijay, S. Elizabeth, M.J. Stanley (2020), Design, fabrication and analysis of bladeless turbine, Materials Science and Engineering 993, 012158.
    [30] T. Engin, M. Özdemir, Ş. Çeşmeci (2009), Design, testing and two-dimensional flow modeling of a multiple-disk fan, Experimental Thermal and Fluid Science 33, 1180-1187.
    [31] A. Guha, S. Sengupta (2013), The fluid dynamics of the rotating flow in a Tesla disc turbine, European Journal of Mechanics B/Fluids 37, 112-123.
    [32] S. Sengupta, A. Guha (2013), Analytical and computational solutions for three-dimensional flow-field and relative pathlines for the rotating flow in a Tesla disc turbine, Computers & Fluids 88, 344-353.
    [33] Y. Galindo, J.A.R. Nava, Y. Hernández, G. Ibáñez, J.M. Acosta, A. Beltrán (2021), Effect of disc spacing and pressure flow on a modifiable Tesla turbine: Experimental and numerical analysis, Applied Thermal Engineering 192, 116792.
    [34] G. Manfrida, L. Pacini, L. Talluri (2017), A revised Tesla turbine concept for ORC application, Energy Procedia 129, 1055-1062.
    [35] L. Pacini, L. Ciappi, L. Talluri, D. Fiaschi, G. Manfrida, J. Smolka (2020), Computational investigation of partial admission effects on the flow field of a tesla turbine for ORC applications, Energy 212, 118687.
    [36] S. Sengupta, A. Guha (2016), Flow of a nanofluid in the microspacing within co-rotating discs of a Tesla turbine, Applied Mathematical Modelling 40, 485-499.
    [37] J. Pawlicki, D. Głowacki, J. Zwoliński, A. Mościcki (2020), Elastic limit load resource when reaming holes in turbine rotor discs, Engineering Failure Analysis 113, 104555.
    [38] E. Lemma, R.T. Deam, D. Toncich, R. Collins (2008), Characterisation of a small viscous flow turbine, Experimental Thermal and Fluid Science 33, 96-105.
    [39] W. Qi, Q. Deng, Y. Jiang, Z. Feng, Q. Yuan (2018), Aerodynamic performance and flow characteristics analysis of Tesla turbines with different nozzle and outlet geometries, Journal of Power and Energy 0,1-21.
    [40] R.J. Pandey, S. Pudasaini, S. Dhakal, R.B. Uprety, H.P. Neopane (2014), Design and computational analysis of 1 kW Tesla turbine, International Journal of Scientific and Research Publications 4(11), 1-5.
    [41] P. Lampart, K. Kosowski, M. Piwowarski, Ł. Jędrzejewski (2009), Design analysis of Tesla micro-turbine operating on a low-boiling medium, Polish Maritime Research 1, 28-33.
    [42] A. Guha, S. Sengupta (2014), The fluid dynamics of work transfer in the non–uniform viscous rotating flow within a Tesla disc turbomachine, Phys Fluids 26, 1-27.
    [43] F. Menter, M. Kuntz, R. Langtry (2003), Ten years of industrial experience with the SST turbulence model, Turbulence, Heat and Mass Transfer 4, 1-8.
    [44] J.D. Anderson, Hypersonic and high-temperature gas dynamics, American Institute of Aeronautics and Astronautics, 2006.
    https://gymkhana.iitb.ac.in/~scp/scp/ocw/aerospace/AE%20624%20-%20Hypersonic%20flow%20theory/Hypersonic%20and%20high-temperature%20gas%20dynamics%20-%20John%20David%20Anderson.pdf, access on: March 6, 2023.
    [45] S. Lasala, P. Chiesa, R. Privat, J.N. Jaubert (2017), Modeling the thermodynamics of fluids treated by CO2 capture processes with Peng−Robinson + Residual Helmholtz Energy-Based mixing rules, Industrial & Engineering Chemistry Research 56(8), 2259-2276.
    [46] OpenFOAM範例教學檔, https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.4-mesh-generation-with-the-snappyhexmesh-utility, access on: March 6, 2023.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE