| 研究生: |
吳孟倫 Wu, Meng-Lun |
|---|---|
| 論文名稱: |
在真空及氮氣氣氛下之氧化鋁初階段燒結研究 Early-stage Sintering of Alumina in Vacuum and Nitrogen Atmosphere |
| 指導教授: |
黃啓原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 多晶氧化鋁 、注漿成型 、燒結動力學 、氣氛燒結 |
| 外文關鍵詞: | alumina, slip casting, atmosphere sintering, activation energy, nitrogen, vacuum |
| 相關次數: | 點閱:130 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討在不同燒結環境下,對於多晶氧化鋁燒結行為的影響,有別於以往探討在添加不同助燒結劑、升溫速率等因素,觀察在真空和氮氣氣氛下燒結之微結構變化。先以注漿成型法製備相對密度可達61%之生胚,使用助燒結劑以硝酸鎂作為前驅物利用滲透法添加500 ppm Mg2+至生胚中,分別以真空、氮氣和傳統常壓燒結,並分析其微結構、晶粒尺寸、密度及燒結活化能。
由實驗結果得知,於真空和氮氣氣氛下燒結之密度,皆可在1400℃不持溫的燒結條件下達到98%以上的相對密度,在1450℃持溫4 h 之條件下相對密度甚至可以達到99.7%。晶粒尺寸方面,真空和氮氣氣氛之燒結樣品在不持溫的情況下可使晶粒限縮在1 μm 以下,根據燒結末期之晶粒成
長公式計算,並和數據進行擬合,以0-4 h 的持溫條件下,真空與氮氣氣氛之晶粒成長指數為2,傳統常壓燒結則為3。微結構方面,於氮氣氣氛與傳統常壓燒結下之燒結體有明顯較大的孔隙,這是由於形成封閉型孔隙時,孔隙內部氣壓上升且內部氣體不易透過晶界擴散至表面,而在真空環境下則無觀察到上述情況。最後再以Arrhenius 方程式計算在不同燒結環境下的活化能,並進行比較。
The initial sintering kinetic of alumina have been studied in different heating rate and doped with metallic oxide (TiO2 or MgO). However, sintering in atmosphere is barely discussed. In this study, green compacts of alumina were produced by slip casting and doped with 500 ppm Mg2+ by infiltration. The α-alumina powder dispersed in deionized water by PAA-NH4. After pre-heated at 800℃ for 12 h, the compacts sintered in air, vacuum and nitrogen atmosphere at 1300-1450℃ and held for 0-4 h. The samples sintered in vacuum and in nitrogen could reach high density (~98%) at 1400℃ and grain size could be ~1 μm. The activation energy of sintering during densification is analyzed by Arrehnius equation. The results of densification activation energy in vacuum, nitrogen and air are 67.4 kJ/mol, 46.8 kJ/mol and 194.7 kJ/mol respectively. After fitting the form with various sintering atmosphere, grain growth exponent n of vacuum and nitrogen sintering are 2, and conventional sintering is 3. The activation energy of grain growth in different atmosphere can be analyzed. It is 268.4 kJ/mol for vacuum sintering and 269.3 kJ/mol, 512.5 kJ/mol for nitrogen and conventional sintering respectively.
[1] A. Krell, T. Hutzler, and J. Klimke, “Transmission physics and consequences for materials selection, manufacturing, and applications,” Journal of the European Ceramic Society, vol. 29, no. 2, pp. 207-221, Jan. 2009.
[2] T. Shirai, H. Watanabe, and M. Takahashi, “Structural properties and surface characteristics on aluminum oxide powders,” Anneal report of the Ceramics Research Laboratory Nagoya Institute of Technology, pp. 23-
31, 2009.
[3] I. Yamashita, H. Nagayama, and K. Tsukuma, “Transmission properties of translucent polycrystalline alumina,” Journal of the American Ceramic Society, vol. 91, no. 8, pp. 2611-2616, Aug. 2008.
[4] J. H. D. Hampton, S. B. Savage, and R. A. L. Drew, “Experimatal-analysis and modeling of slip casting,” Journal of the American Ceramic Society, vol. 71, no. 12, pp. 1040-1045, Dec. 1988.
[5] T. S. Yeh, and M. D. Sacks, “Effect of particle-size distribution on the sintering of alumina,” Journal of the American Ceramic Society, vol. 71, no. 12, pp. C484-C487, Dec. 1988.
[6] A. Krell, and J. Klimke, “Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina,” Journal of the American Ceramic Society, vol. 89, no. 6, pp. 1985-1992, Jun. 2006.
[7] J. M. F. Ferreira, “Role of the clogging effect in the slip casting process,” Journal of the European Ceramic Society, vol. 18, no. 9, pp. 1161-1169, 1998.
[8] Y. Hotta, T. Banno, S. Sano, A. Tsuzuki, and K. Oda, “Translucent alumina produced by slip-casting using a gypsum mold,” Journal of the Ceramic Society of Japan, vol. 108, no. 11, pp. 1030-1033, Nov. 2000.
[9] 賴岳淵,以注漿成形法製備透光氧化鋁陶瓷,資源工程學系碩士論
文,國立成功大學,台南市,2016。
[10] 林幸慧,以聚丙烯酸銨分散之次微米氧化鋁粉末的流變、注漿成形
及燒結行為,資源工程學系碩士論文,國立成功大學,台南市, 2009。
[11] B. Liu, R. C. Peng, X. Wang, and Y. Wu, “Influence factors for stability behavior of Al2O3 suspension,” The Chinese Journal of Nonferrous Metals, vol. 22, pp. 2833-2838, Oct. 2012.
[12] K. A. Berry, and M. P. Harmer, “Effect of MgO solute on microstructure development in Al2O3,” Journal of the American Ceramic Society, vol. 69, no. 2, pp. 143-149, Feb. 1986.
[13] M. Stuer, Z. Zhao, U. Aschauer, and P. Bowen, “Transparent polycrystalline alumina using spark plasma sintering: Effect of Mg, Y and La doping,” Journal of the European Ceramic Society, vol. 30, no. 6, pp. 1335-1343, Apr. 2010.
[14] Y. M. Zhang, H. X. Guo, B. Wang, and J. F. Yang, “Effect of ZrO2 and MgO doping on microstructure and properties of translucent alumina fabricated by rapid vacuum sintering,” Functional Materials Letters, vol.
11, no. 5, Oct. 2018.
[15] 王志仁,微晶粒氧化鋁陶瓷體之製備與機械性質,資源工程學系博
士論文,國立成功大學,台南市,2008。
[16] P. Mogilevsky, R. J. Kerans, H. D. Lee, K. A. Keller, and T. A. Parthasarathyz, “On densification of porous materials using precursor solutions,” Journal of the American Ceramic Society, vol. 90, no. 10, pp. 3073-3084, Oct. 2007.
[17] S. J. Glass, and D. J. Green, “Permeability and infiltration of partially sintered ceramics,” Journal of the American Ceramic Society, vol. 82, no. 10, pp. 2745-2752, Oct. 1999.
[18] W. C. Tu, and F. F. Lange, “Liquid precursor infiltration processing of powder compacts. 1. Kinetic studies and microstructure development,” Journal of the American Ceramic Society, vol. 78, no. 12, pp. 3277-3282,
Dec. 1995.
[19] 謝佳真,以液相前驅物滲透法摻雜助燒結劑製備透光氧化鋁,資源
工程學系碩士論文,國立成功大學,台南市,2018。
[20] X. H. Wang, P. L. Chen, and I. W. Chen, “Two-step sintering of ceramics with constant grain-size, I. Y2O3,” Journal of the American Ceramic Society, vol. 89, no. 2, pp. 431-437, Feb. 2006.
[21] R. L. Coble, “Sintering crystalline solids .1. intermediate and final state diffusion models,” Journal of Applied Physics, vol. 32, no. 5, pp. 787-&, 1961.
[22] C. Lu, Y. L. Ai, Q. L. Yu, W. H. Chen, W. He, J. J. Zhang, and X. X. Min, “Study on the growth kinetics of Al2O3 columnar crystal in Al2O3 matrix composite ceramics prepared by microwave sintering,” Journal of Crystal
Growth, vol. 507, pp. 395-401, Feb. 2019.
[23] R. L. Coble, “Intermediate-stage sintering - modification and correction of a lattice-diffusion model,” Journal of Applied Physics, vol. 36, no. 7, pp. 2327-&, 1965.
[24] W. M. Zeng, L. Gao, L. H. Gui, and J. K. Guo, “Sintering kinetics of alpha-Al2O3 powder,” Ceramics International, vol. 25, no. 8, pp. 723-726, 1999.
[25] R. M. German, Sintering theory and practice, pp. 86-92, 1996.
[26] M. J. Bannister, “Morphology relations during bulk-transport sintering, with referance to thoria gel - discussion,” Metallurgical Transactions a-Physical Metallurgy and Materials Science, vol. 8, no. 5, pp. 791-792, 1977.
[27] 梁家豪,三種分析反應動力學及燒結資料的新方法,地質科學系碩
士論文,國立臺灣大學,台北市,2003。
[28] I. Culter, and W. Young, “Initial sintering with constant rates of heating,” Journal of The American Ceramic Society, pp. 659-663, May 1969.
[29] J. D. Wang, and R. Raj, “Estimate of the activation-energies for boundary diffusion from rate-controlled sinterin of pure alumina, and alumina doped with zirconia or titania,” Journal of the American Ceramic Society,
vol. 73, no. 5, pp. 1172-1175, May 1990.
[30] J. D. Hansen, R. P. Rusin, M. H. Teng, and D. L. Johnson, “Combined stage sintering model,” Journal of the American Ceramic Society, vol. 75, no. 5, pp. 1129-1135, May 1992.
[31] H. Su, and D. L. Johnson, “Master sintering curve A practical approach to sintering,” Journal of the American Ceramic Society, vol. 79, pp. 3211-3217.
[32] V. Pouchly, and K. Maca, “Master Sintering Curve - A Practical Approach to its Construction,” Science of Sintering, vol. 42, no. 1, pp. 25-32, Jan-Apr. 2010.
[33] S. J. Dillon, and M. P. Harmer, “Intrinsic grain boundary mobility in alumina,” Journal of the American Ceramic Society, vol. 89, no. 12, pp. 3885-3887, Dec. 2006.
[34] D. L. Johnson, and I. B. Cutler, “Diffusion sintering .2. initial sintering kinetics of alumina,” Journal of the American Ceramic Society, vol. 46, no. 11, pp. 545-550, 1963.
[35] S. Kang, and K. Yoon, “Densification of ceramics containing entrapped gases,” Journal of the European Ceramic Society, pp. 135-139, Jun. 1989.
[36] R. L. Coble, “Sintering alumina: effect of atmospheres,” Journal of the American Ceramic Society, vol. 45, no. 3, pp. 123-127, Mar. 1962.
[37] G. C. Wei, and W. H. Rhodes, “Sintering of translucent alumina in a nitrogen-hydrogen gas atmosphere,” Journal of the American Ceramic Society, vol. 83, no. 7, pp. 1641-1648, Jul. 2000.
[38] H. H. Zhang, Y. L. Xu, B. Wang, X. Zhang, J. F. Yang, and K. Niihara, “Effects of heating rate on the microstructure and mechanical properties of rapid vacuum sintered translucent alumina,” Ceramics International,
vol. 41, no. 9, pp. 12499-12503, Nov. 2015.
[39] G. Mata-Osoro, J. S. Moya, and C. Pecharroman, “Transparent alumina by vacuum sintering,” Journal of the European Ceramic Society, vol. 32, no. 11, pp. 2925-2933, Aug. 2012.
[40] R. L. Coble, “Sintering crystalline solids. II. experimenatal test of diffusion models in powder compacts,” Journal of Applied Physics, vol. 32, pp. 793-799, Dec. 1960.