簡易檢索 / 詳目顯示

研究生: 倪東正
Ni, Tong-Chang
論文名稱: 尼泊爾埋葬蟲的繁殖成功率的季節變化與艾里效應探討
Allee effect and seasonality in reproductive success in burying beetles (Nicrophorus nepalensis)
指導教授: 陳一菁
Chen, I-Ching
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 32
中文關鍵詞: 繁殖表現季節變化族群密度艾里效應生理限制
外文關鍵詞: reproductive performance, seasonality, population density, Allee effect, physiological constraint
相關次數: 點閱:126下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 了解影響物種繁殖表現的因子與其機制,一直是生態學上重要的議題。物種繁殖表現的時空變化是受到許多因子共同影響的結果,然而過去的研究多偏重於探討影響物種繁殖表現的空間差異,造成物種繁殖表現季節變化的機制則較少被研究。在本研究中,我們以尼泊爾埋葬蟲(Nicrophorus nepalensis)為研究對象,探討影響物種繁殖表現季節變化的因子與機制,並測試下列假說: 1) 生理限制假說:環境因子的季節變化影響物種生理反應,進而影響繁殖表現;2) 艾里效應假說:族群密度的季節變化造成繁殖表現的的正密度依賴性,導致繁殖表現的季節變化。本研究解果發現,在低海拔地區,由於夏季尼泊爾埋葬蟲的族群密度有些微的上升,使得埋葬蟲能形成大的合作群體,以合作生殖的方式抵抗不適宜的高溫環境,因而維持了稍低但卻穩定的繁殖成功率。相反的,中海拔地區,因族群密度隨季節的遞嬗而逐漸遞減,增加了埋葬蟲形成大合作體的困難,因而不利於抵抗外在惡劣的的環境,使得繁殖成功率逐季節遞減。然而,高海拔地區,由於低的族群密度導致埋葬蟲找到屍體的機率降低,以至於繁殖成功率也隨族群密度降低而遞減。我們的結果指出,尼泊爾埋葬蟲繁殖成功率的季節差異,是受到族群密度的季節變化的影響,符合艾里效應假說。我們的結果意味著,族群密度因極端氣候事件與人為的棲地破壞而降低,使得物種不利於抵抗外在的惡劣環境,而限制其分布之外,也可能導致能繁殖的季節縮減,加速物種的滅絕。

    關鍵字:繁殖表現、季節變化、族群密度、艾里效應、生理限制

    SUMMARY
    Understanding factors affecting reproductive performances of species and the underlying mechanisms is an important goal for macroecological studies. However, the mechanism of how reproductive performances change across seasons remains poorly understood. Here, we used burying beetle (Nicrophorus nepalensis) to test two hypotheses: 1) physiological constraint hypothesis, which denotes that seasonal variation in reproductive performance is directly limited by environmental factors; 2) Allee effect hypothesis, which denotes that seasonal variation in reproductive performance is modulated by positive density-dependent population regulation. We found that, at low elevation, the slightly higher population density in summer allowed burying beetles to form larger cooperative groups to overcome stronger interspecific competition at warmer environments and maintain a relatively stable probability of breeding successfully across seasons. At intermediate elevation, probability of breeding successfully decreased with decreasing population density across season, since burying beetles failed to successfully cooperate at low population density. However, at high elevation, probability of breeding successfully also decreased with decreasing population density across season, since burying beetles failed to locate the carcasses at low population density. Our results show that seasonal variation in reproductive performance of burying beetles was strongly modulated by population density, as predicted by the Allee effect hypothesis. Our findings imply that decrease in population density will reduce the ability of species to cope with environmental stress. Our results also highlight the need to maintain population density in order to promote population sustainability under future climate and land-use changes.

    Key words: reproductive performance, seasonality, population density, Allee effect, physiological constraint

    目錄 中文摘要 I 英文延伸摘要 II 誌謝 V 目錄 VI 表目錄 VII 圖目錄 VIII 壹、前言 1 貳、材料與方法 4 一、研究物種 4 二、方法 4 1. 尼泊爾埋葬蟲的繁殖表現調查 4 2. 影片分析 5 3. 尼泊爾埋葬蟲的族群密度調查 5 4. 族群密度的操控實驗 6 5. 資料整理與分析 7 參、結果 8 一、不同海拔尼泊爾埋葬蟲繁殖成功率的季節變化 8 二、不同海拔尼泊爾埋葬蟲族群密度的季節變化 8 三、溫度與族群密度影響繁殖成功率 9 四、合作群體大小對繁殖成功率的影響 9 五、埋葬蟲尋獲屍體的機率及速度對繁殖成功率的影響 9 六、族群密度的操控實驗 10 肆、討論 11 伍、結論 14 陸、參考文獻 15 表目錄 表一、海拔、季節對尼泊爾埋葬蟲繁殖成功率的影響 18 表二、海拔、季節對尼泊爾埋葬蟲族群密度的影響 19 表三、溫度與族群密度對尼泊爾埋葬蟲繁殖成功率的影響 20 表四、控制尼泊爾埋葬蟲密度下,每日最低溫與季節對繁殖成功率的影響 21 表五、低密度(一公一母)與高密度(三公三母)在不同海拔間的繁殖成功率比較 22   圖目錄 圖一、研究樣區圖 23 圖二、實驗裝置圖 24 圖三、控制埋葬蟲密度的實驗裝置圖 25 圖四、不同季節尼泊爾埋葬蟲繁殖成功率與族群密度沿海拔梯度的變化 26 圖五、不同海拔尼泊爾埋葬蟲繁殖成功率與族群密度的季節變化 27 圖六、尼泊爾埋葬蟲繁殖成功率隨族群密度與溫度的變化 28 圖七、尼泊爾埋葬蟲族群密度影響群大小,並影響繁殖成功率 29 圖八、尼泊爾埋葬蟲族群密度影響尋獲屍體機率、搜尋時間與繁殖成功率 30 圖九、控制埋葬蟲密度下,低密度(一公一母)在不同海拔的繁殖成功率的季節變化 31 圖十、控制尼泊爾埋葬蟲的密度下,沿海拔梯度的繁殖成功率比較 32

    石維楷。尼泊爾埋葬蟲海拔分布界線之形成機制。國立成功大學生命科學研究所。2016。
    汪琮瑋。棲地改變與艾里效應對尼泊爾埋葬蟲海拔分布範圍影響。國立臺灣大學生態學與演化生物學研究所。2016。
    張安瑜。氣候及生物因子對尼泊爾埋葬蟲與紅胸埋葬蟲海拔分布的影響。國立臺灣大學生態學與演化生物學研究所。2013。
    黃文伯 & 葛兆年。哈盆自然保留區屍食性甲蟲物種生物多樣性監測與氣候變遷之關係。國立台南大學環境與生態學報。4(1), 17-34。2011。
    藍美琪。尼泊爾埋葬蟲(Nicrophorus nepalensis)(Coleoptera Silphidae)野外個體活動時間、空間分布及親代對子代調節與親疏辨認之研究。國立台南大學環境生態研究所。2010。
    Allee, W. & Bowen, E. S. Studies in animal aggregations: mass protection against colloidal silver among goldfishes. Journal of Experimental Zoology, 61, 2, 185-207. 1932.
    Angulo, E., Rasmussen, G. S. A., Macdonald, D. W. & Courchamp, F. Do social groups prevent Allee effect related extinctions?: The case of wild dogs. Frontiers in Zoology, 10, 13. 2013.
    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and Biogeographical Patterns in the Reproductive Biology of Scleractinian Corals. Annual Review of Ecology Evolution and Systematics, 40, 551-571. 2009.
    Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: when and why does adaptation fail? Trends in Ecology & Evolution, 22, 3, 140-147. 2007.
    Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., Hua, X., Karanewsky, C. J., Ryu, H. Y., Sbeglia, G. C., Spagnolo, F., Waldron, J. B. & Wiens, J. J. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. Journal of Biogeography, 41, 3, 429-442. 2014.
    Caughley, G., Grice, D., Barker, R. & Brown, B. The edge of the range. Journal of Animal Ecology, 57, 3, 771-785. 1988.
    Cavestany, D., Elwishy, A. B. & Foote, R. H. Effect of season and high environmental-temperature on fertility of holstein cattle. Journal of Dairy Science, 68, 6, 1471-1478. 1985.
    Courchamp, F., Berec, L. & Gascoigne, J. Allee effects in ecology and conservation. Environ. Conserv, 36, 1, 80-85. 2008.
    Courchamp, F. & Macdonald, D. W. Crucial importance of pack size in the African wild dog Lycaon pictus. Animal Conservation, 4, 02, 169-174. 2001.
    Davis, H. G., Taylor, C. M., Civille, J. C. & Strong, D. R. An Allee effect at the front of a plant invasion: Spartina in a Pacific estuary. Journal of Ecology, 92, 2, 321-327. 2004.
    DeVault, T. L., Rhodes, O. E. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos, 102, 2, 225-234. 2003.
    Donovan, S., Hall, M., Turner, B. & Moncrieff, C. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Medical and veterinary entomology, 20, 1, 106-114. 2006.
    Drake, J. & Kramer, A. Allee effects. Nature Education Knowledge, 3, 2, 2011.
    Dunn, P. 2004. Breeding dates and reproductive performance. Pages 69-87 in A. P. Moller, W. Fielder, and P. Berthold, editors. Birds and Climate Change. Academic Press Ltd, London.
    Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R. & Mearns, L. O. Climate extremes: Observations, modeling, and impacts. Science, 289, 5487, 2068-2074. 2000.
    Elam, D. R., Ridley, C. E., Goodell, K. & Ellstrand, N. C. Population size and relatedness affect fitness of a self-incompatible invasive plant. Proceedings of the National Academy of Sciences, 104, 2, 549-552. 2007.
    Gascoigne, J., Berec, L., Gregory, S. & Courchamp, F. Dangerously few liaisons: a review of mate-finding Allee effects. Population Ecology, 51, 3, 355-372. 2009.
    Grassberger, M. & Reiter, C. Effect of temperature on Lucilia sericata (Diptera : Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Science International, 120, 1-2, 32-36. 2001.
    Hwang, W. & Shiao, S. F. Dormancy and the influence of photoperiod and temperature on sexual maturity in Nicrophorus nepalensis (Coleoptera: Silphidae). Insect Science, 18, 2, 225-233. 2011.
    Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. American Naturalist, 111, 980, 691-713. 1977.
    Kishimoto‐Yamada, K. & Itioka, T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomological Science, 18, 4, 407-419. 2015.
    Kramer, A. M., Dennis, B., Liebhold, A. M. & Drake, J. M. The evidence for Allee effects. Population Ecology, 51, 3, 341-354. 2009.
    Lande, R. Anthropogenic, ecological and genetic factors in extinction and conservation. Researches on Population Ecology, 40, 3, 259-269. 1998.
    Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature, 412, 6849, 816-819. 2001.
    Parmesan, C., Root, T. L. & Willig, M. R. Impacts of extreme weather and climate on terrestrial biota. Bulletin of the American Meteorological Society, 81, 3, 443-450. 2000.
    Peng, Y. Q., Compton, S. G. & Yang, D. R. The reproductive success of Ficus altissima and its pollinator in a strongly seasonal environment: Xishuangbanna, Southwestern China. Plant Ecology, 209, 2, 227-236. 2010.
    Pukowski, E. Ökologische untersuchungen an Necrophorus F. Zoomorphology, 27, 3, 518-586. 1933.
    Scott, M. P. Competition with flies promotes communal breeding in the burying beetle, nicrophorus-tomentosus. Behavioral Ecology and Sociobiology, 34, 5, 367-373. 1994.
    Scott, M. P. The ecology and behavior of burying beetles. Annual review of entomology, 43, 595-618. 1998.
    Scott, M. P. & Gladstein, D. S. Calculating males? An empirical and theoretical examination of the duration of paternal care in burying beetles. Evolutionary Ecology, 7, 4, 362-378. 1993.
    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and Ecology of Species Range Limits. Annual Review of Ecology Evolution and Systematics, 40, 415-436. 2009.
    Sikes, D. S., Trumbo, S. T. & Madge, R. B. Revision of Nicrophorus in part: new species and inferred phylogeny of the nepalensis-group based on evidence from morphology and mitochondrial DNA (Coleoptera: Silphidae: Nicrophorinae). Invertebrate Systematics, 20, 3, 305-365. 2006.
    Skaug, H., Fournier, D., Nielsen, A., Magnusson, A. & Bolker, B. Generalized linear mixed models using AD model builder. R package version 0.7, 2, 2012.
    Stephens, P. A., Sutherland, W. J. & Freckleton, R. P. What is the Allee effect? Oikos, 185-190. 1999.
    Sun, S. J., Rubenstein, D. R., Chen, B. F., Chan, S. F., Liu, J. N., Liu, M., Hwang, W., Yang, P. S. & Shen, S. F. Climate-mediated cooperation promotes niche expansion in burying beetles. eLife, 3, e02440. 2014.
    Tobin, P. C., Berec, L. & Liebhold, A. M. Exploiting Allee effects for managing biological invasions. Ecology letters, 14, 6, 615-624. 2011.
    Vercken, E., Kramer, A., Tobin, P. & Drake, J. Critical patch size generated by Allee effect in gypsy moth, Lymantria dispar (L.). Ecology letters, 14, 2, 179-186. 2011.
    Wagenius, S., Lonsdorf, E. & Neuhauser, C. Patch aging and the S‐allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. The American Naturalist, 169, 3, 383-397. 2007.
    Wang, G. & Dillon, M. E. Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nature Climate Change, 4, 11, 988-992. 2014.
    Wolda, H. Insect seasonality: why? Annual review of ecology and systematics, 1-18. 1988.

    下載圖示 校內:2018-09-02公開
    校外:2018-09-02公開
    QR CODE