簡易檢索 / 詳目顯示

研究生: 李博議
Lee, Po-Yi
論文名稱: A Type五軸工具機與車銑複合機之切削性能檢測標準設計與建立
Desgin of Cutting Performance Testing Standard of A Type Five-Axis Machine Tools and Mill-Turn Muti-Tasking Machines
指導教授: 陳響亮
Chen, Shang-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 159
中文關鍵詞: 五軸工具機車銑複合機NAS 979ISO 10791運動誤差誤差源
外文關鍵詞: five-axis machine tool, mill-turn multi-tasking machine, NAS 979, ISO 10791, motion error
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內現階段針對五軸工具機誤差研究大多為機台雷射校正及靜態結構分析,但切削時伴隨不確定的實際切削誤差會直接反應於切削件,如刀具溫升、振動、背隙等,此部分的誤差原因無法於機台校正時被發現並調整。
    所以,現今國內外的學術研究較少以直接切削測試法所得到的工件,量測誤差分析結果並推估五軸工具機之誤差源。因此,本研究以待測試的A Type五軸工具機與車銑複合機,並參考NAS 979與ISO10791的切削測試標準,以直接切削測試法切削金字塔型及圓柱型切削測試件,根據量測切削測試件誤差,設計與建立運動誤差分析。
    本運動誤差分析是以金字塔型切削測試件為主,並以其幾何外型優勢進行推估影響五軸工具機43項誤差源中的14項誤差,其中包括3項X、Y、Z線性軸定位誤差、2項B及C旋轉軸定位誤差、6項X、Y、Z線性軸真直度誤差(水平分量及垂直分量)、3項X-Y軸、Y-Z軸、Z-X軸的垂直度誤差。透過量測結果及本研究設計的運動誤差分析法,使切削測試件的量測結果能清楚顯現出機台誤差,後續得以進行機台調整或控制器補償。

    Recently, most five axis machine tool of structural analysis and laser measurement researches are correcting statically. Some errors occur and are unable to find out at first during actual cutting situation.For example, error conditions such as cutter heating, vibration and backlash are unable to find out for adjustment due to differ of workpieces.
    For these reasons, however, there are no enough researches focus on direct cutting method for analyzing workpiece errors and estimating errors sources of five axis machine tools in the academic researches. Therefore, based in cutting test standard of NAS 979, ISO 10791 international cutting standards and cutting machines of Type A five axis machine tools and mill-turn multi-tasking machines. According to error measurement results of the pyramid-shaped and the cylinder-shaped, design and establish the motion errors analysis model.
    The main error analysis is focus on the pyramid-shaped workpiece, and use its adventage condition to estimate the 14 error sources, including five items of positioning error of X, Y, Z, B and C axis, six items of straightness error of horizontal and vertical component of X, Y, Z axis, three items of perpendicularity error of X-Y axis, Y-Z axis, Z-X axis. Clarify machine mistake according to measurement results and motion error method for adjustment and compentation.

    摘 要 III Abstract IV 誌 謝 V 目 錄 VII 圖 目 錄 X 表 目 錄 XV 符號 XVII 第一章 緒論 1 1.1 研究背景 1 1.2 研究機型介紹 2 1.2.1 A Type五軸工具機 2 1.2.2 車銑式複合機 4 1.3 研究動機 5 1.4 研究目的 5 1.5 文獻回顧 6 1.6 研究架構與流程 11 1.7 章節瀏覽 16 第二章 切削測試件CAD/CAM規劃與設計 17 2.1 CAD Model 特徵設計 17 2.1.1 切削測試件切削條件設定規範 20 2.2 金字塔型切削測試件CAM切削參數設定與切削路徑規劃 21 2.2.1 金字塔型切削測試件切削參數設定 21 2.2.2 A Type五軸工具機之金字塔型切削測試件切削路徑規劃 23 2.2.3 A Type長行程五軸工具機之金字塔型切削測試件切削路徑規劃 29 2.2.4 車銑式複合機之金字塔型切削測試件切削路徑規劃 32 2.3 圓柱型切削測試件CAM切削參數設定與切削路徑規劃 38 2.3.1 圓柱型切削測試件切削參數設定 38 2.3.2 A Type五軸工具機與車銑複合機之圓柱型測試件切削路徑規劃 41 第三章 誤差分析及尺寸與幾何公差量測規劃 47 3.1 金字塔型切削測試件量測規劃與誤差說明 48 3.2 圓柱型切削測試件量測規劃與誤差說明 61 3.3 運動誤差分析 77 3.3.1 X軸定位誤差 77 3.3.2 X軸真直度 82 3.3.3 Y軸定位誤差 84 3.3.4 Y軸真直度 88 3.3.5 Z軸定位誤差 90 3.3.6 Z軸真直度 95 3.3.7 XY軸垂直度 97 3.3.8 YZ軸垂直度 99 3.3.9 ZX軸垂直度 101 3.3.10 B軸定位誤差 103 3.3.11 C軸定位誤差 104 第四章 切削測試件實際加工紀錄 113 4.1 A Type五軸工具機金字塔型切削測試件實際切削圖 114 4.2 A Type五軸工具機圓柱型切削測試件實際切削圖 115 4.3 車銑複合機金字塔型切削測試件實際切削紀錄 116 4.4 車銑複合機圓柱型切削測試件實際切削紀錄 117 第五章 切削測試件量測結果與分析 118 5.1 A Type五軸工具機 119 5.1.1 金字塔型切削測試件量測報告 119 5.1.2 金字塔型切削測試件量測結果分析 122 5.1.3 圓柱型切削測試件量測報告 124 5.1.4 圓柱型切削測試件量測結果分析 126 5.2 車銑複合機 128 5.2.1 金字塔型切削測試件量測報告 128 5.2.2 金字塔型切削測試件量測結果分析 131 5.2.3 圓柱型切削測試件量測報告 133 5.2.4 圓柱型切削測試件量測結果分析 135 第六章 結論 138 參考文獻 139 附錄A Zeiss機台量測說明 142 附錄B CNS 3-4工程製圖(幾何公差) 156

    [1] ISO 10791-6,7:1998, Test conditions for machining centres.
    [2] 廖明毅, “以DBB量測及校正五軸工具機之幾何誤差”, 國立清華大學動力機械工程學系, 碩士論文, 2002
    [3] M. Sharif Uddina, Soichi Ibarakia/Atsushi Matsubara/Tetsuya Matsushitab, “Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors”, Precision Engineering, Volume 33, pp 194-201, 2009
    [4] Soichi Ibarakia, Masahiro Sawada, Atsushi Matsubara, Tetsuya Matsushita, “Machining tests to identify kinematic errors on five-axis machine tools”, Precision Engineering, Volume 34, pp 387-398, 2010
    [5] National Aerospace Standard 979 69, Aerospace Industries Association of America Inc., 1969
    [6] Soichi Ibarakia,Takeyuki Iritani, Tetsuya Matsushita, “Calibration of location errors of rotary axes on five-axis machine tools by on –the-machine measurement using a touch-trigger probe”, International Journal of Machine Tools & Manufacture, Volume 58, pp 44-53, 2012
    [7] H. Chanal, E. Duc, P. Ray, “A study of the impact of machine tool structure on machining processes”, International Journal of Machine Tools & Manufacture, Volume 46, Issue 2, pp 98-106, 2006
    [8] W. T. Lei, Y. Y. Hsu, “Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part I:design and modeling, International Journal of Machine Tools & Manufacture, Volume 42, pp 1153-1162, 2002
    [9] Zhengchun Du, Shujie Zhang, Maisheng Hong, “Development of a multi-step measuring method for motion accuracy of NC machine tools based on cross grid encoder”, International Journal of Machine Tools & Manufacture, Volume 50, pp 270-280, 2010
    [10] Psang Dain Lin, Chian Sheng Tzeng, “Modeling and measurement of active parameters and workpiece home position of a multi-axis machine tool”, International Journal of Machine Tools & Manufacture, Volume 48, pp 338-349, 2008
    [11] N.A. Barakat, M.A. Elbestawi, A.D. Spence, “Kinematic and geometric error compensation of a coordinate measuring machine”, International Journal of Machine Tools &Manufacture, Volume 40, pp 833-850, 2000
    [12] Mahbubur Rahman, Jouko Heikkala, Kauko Lappalainen, “Modeling, measurement and error compensation of multi-axis machine tools. Part I: theory”, International Journal of machine Tools & Manufacture, Volume 40, pp 1535-1546, 2000
    [13] Sergio Bossoni, “Geometric and Dynamic Evaluation and Optimization of Machining Centers”, Dissertation, ETH Zurich, 2009
    [14] E. Trapet, F. Wäldele, ” A reference object based method to determine the parametric error components of coordinate measuring machines and machine tools”, Measurement, Volume 9, Issue 1, pp 17-22, January-March 1991
    [15] Cefu Hong, Soichi Ibaraki, Atsushi Matsubara, “Influence of position-dependent geometric errors of rotary axes on a machining test of cone frustum by five-axis machine tools”, Precision Engineering, Volume 35, Issue 1, pp 1-11, January 2011
    [16] 謝東賢,” 工具機導軌精度量測與性能評估”,國立成功大學製造資訊與系統研究所, 博士論文, 2011
    [17] 彭怡敏, ”五軸工具機動態誤差量測及補償”, 國立清華大學動力機械工程學系, 碩士論文, 2007
    [18] 郭卉蓁, ”工具機之運動輪廓誤差補償研究”, 國立成功大學製造資訊與系統研究所, 博士論文, 2010
    [19] 陳志安, ”五軸CNC工具機動態誤差與幾何誤差之誤差分析與模擬”, 國立虎尾科技大學機械與電機工程研究所碩士論文, 2010
    [20] 楊淵城, “車銑複合工具機之差補器及其電腦輔助製造系統研究", 國立成功大學製造工程研究所, 碩士論文, 2002
    [21] 吳錫章, “非正交型車銑複合虛擬工具機運動模擬系統之發展”, 國立成功大學機械工程學系, 碩士論文, 2007
    [22] 游振奇, ”五軸工具機動態誤差量測系統”, 國立清華大學動力機械工程學系, 碩士論文, 2008
    [23] Zeiss機台操作說明書
    [24] 中國國家標準CNS 3-4工程製圖(幾何公差)

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE